BenchmarkXPRT Blog banner

Category: Cross-platform benchmarks

We welcome your CloudXPRT results!

We recently published a set of CloudXPRT Data Analytics and Web Microservices workload test results submitted by Quanta Computer, Inc. The Quanta submission is the first set of CloudXPRT results that we’ve published using the formal results submission and approval process. We’re grateful to the Quanta team for carefully following the submission guidelines, enabling us to complete the review process without a hitch.

If you are unfamiliar with the process, you can find general information about how we review submissions in a previous blog post. Detailed, step-by-step instructions are available on the results submission page. As a reminder for testers who are considering submitting results for July, the submission deadline is tomorrow, Friday July 16, and the publication date is Friday July 30. We list the submission and publication dates for the rest of 2021 below. Please note that we do not plan to review submissions in December, so if we receive results submissions after November 30, we may not publish them until the end of January 2022.

August

Submission deadline: Tuesday 8/17/21

Publication date: Tuesday 8/31/21

September

Submission deadline: Thursday 9/16/21

Publication date: Thursday 9/30/21

October

Submission deadline: Friday 10/15/21

Publication date: Friday 10/29/21

November

Submission deadline: Tuesday 11/16/21

Publication date: Tuesday 11/30/21

December

Submission deadline: N/A

Publication date: N/A

If you have any questions about the CloudXPRT results submission, review, or publication process, please let us know!

Justin

How to submit WebXPRT results for publication

It’s been a while since we last discussed the process for submitting WebXPRT results to be considered for publication in the WebXPRT results browser and the WebXPRT Processor Comparison Chart, so we thought we’d offer a refresher.

Unlike sites that publish all results they receive, we hand-select results from internal lab testing, user submissions, and reliable tech media sources. In each case, we evaluate whether the score is consistent with general expectations. For sources outside of our lab, that evaluation includes confirming that there is enough detailed system information to help us determine whether the score makes sense. We do this for every score on the WebXPRT results page and the general XPRT results page. All WebXPRT results we publish automatically appear in the processor comparison chart as well.

Submitting your score is quick and easy. At the end of the WebXPRT test run, click the Submit your results button below the overall score, complete the short submission form, and click Submit again. The screenshot below shows how the form would look if I submitted a score at the end of a WebXPRT 3 run on my personal system.

After you submit your score, we’ll contact you to confirm how we should display the source. You can choose one of the following:

  • Your first and last name
  • “Independent tester” (for those who wish to remain anonymous)
  • Your company’s name, provided that you have permission to submit the result in their name. To use a company name, we ask that you provide a valid company email address.


We will not publish any additional information about you or your company without your permission.

We look forward to seeing your score submissions, and if you have suggestions for the processor chart or any other aspect of the XPRTs, let us know!

Justin

The WebXPRT 4 tech press feedback survey

Device reviews in publications such as AnandTech, Notebookcheck, and PCMag, among many others, often feature WebXPRT test results, and we appreciate the many members of the tech press that use WebXPRT. As we move forward with the WebXPRT 4 development process, we’re especially interested in learning what longtime users would like to see in a new version of the benchmark.  

In previous posts, we’ve asked people to weigh in on the potential addition of a WebAssembly workload or a battery life test. We’d also like to ask experienced testers some other test-related questions. To that end, this week we’ll be sending a WebXPRT 4 survey directly to members of the tech press who frequently publish WebXPRT test results.

Regardless of whether you are a member of the tech press, we invite you to participate by sending your answers to any or all the questions below to benchmarkxprtsupport@principledtechnologies.com. We ask you to do so by the end of May.

  • Do you think WebXPRT 3’s selection of workload scenarios is representative of modern web tasks?
  • How do you think WebXPRT compares to other common browser-based benchmarks, such as JetStream, Speedometer, and Octane?
  • Are there web technologies that you’d like us to include in additional workloads?
  • Are you happy with the WebXPRT 3 user interface? If not, what UI changes would you like to see?
  • Are there any aspects of WebXPRT 2015 that we changed in WebXPRT 3 that you’d like to see us change back?
  • Have you ever experienced significant connection issues when testing with WebXPRT?
  • Given the array of workloads, do you think the WebXPRT runtime is reasonable? Would you mind if the average runtime were a bit longer?
  • Are there any other aspects of WebXPRT 3 that you’d like to see us change?

If you’d like to discuss any topics that we did not cover in the questions above, please feel free to include additional comments in your response. We look forward to hearing your thoughts!

Justin

Considering a battery life test for WebXPRT 4

A few weeks ago, we discussed the beginnings of a WebXPRT 4 development plan, and asked for reader feedback about potential workload changes. So far, the two most common feedback topics have been the possible addition of a WebAssembly workload, and the feasibility of including a browser-based battery life test. Today, we discuss what a WebXPRT 4 battery life test would look like, and some of the challenges we’d have to overcome to make it a reality.

Battery life tests fall into two primary categories: simple rundown tests and performance-weighted tests. Simple rundown tests measure battery life during extreme idle periods and loops of movie playbacks, etc., but do not reflect the wide-ranging mix of activities that characterize a typical day for most users. While they can be useful for performing very specific apple-to-apples comparisons, these tests have limited value when it comes to giving consumers a realistic estimation of the battery life they would experience during everyday use.

In contrast, performance-weighted battery life tests, such as the one in CrXPRT 2, attempt to reflect real-world usage. The CrXPRT battery life test simulates common daily usage patterns for Chromebooks by including all the productivity workloads from the performance test, plus video playback, audio playback, and gaming scenarios. It also includes periods of wait/idle time. We believe this mixture of diverse activity and idle time better represents typical real-life behavior patterns. This makes the resulting estimated battery life much more helpful for consumers who are trying to match a device’s capabilities with their real-world needs.

From a technical standpoint, WebXPRT’s cross-platform nature presents us with several challenges that we did not face while developing the CrXPRT battery life test for Chrome OS. While the WebXPRT performance tests run in almost any browser, cross-browser differences in battery life reporting may restrict the battery life test to a single browser. For instance, Mozilla has deprecated the battery status API for Firefox, and we’re not yet sure if there’s another approach that would work. If a WebXPRT 4 battery life test supported only a single browser, such as Chrome or Safari, would you still be interested in using it? Please let us know.

A browser-based battery life workflow also presents other challenges that we do not face in native client applications such as CrXPRT:

  • A browser-based battery life test would require the user to check the starting and ending battery capacities, with no way for the app to independently verify data accuracy.
  • The battery life test could require more babysitting in the event of network issues. We can catch network failures and try to handle them by reporting periods of network disconnection, but those interruptions could influence the battery life duration.
  • The factors above could make it difficult to achieve repeatability. One way to address that problem would be to run the test in a standardized lab environment lab with a steady internet connection, but a long list of standardized environmental requirements would make the battery life test less attractive and less accessible to many testers.

Our intention with today’s blog is not to make a WebXPRT 4 battery life test seem like an impossibility. Rather, we want to share our perspective on what the test might look like, and describe some of the challenges and considerations in play. If you have thoughts about battery life testing, or experience with battery life APIs in one or more of the major browsers, we’d love to hear from you!

Justin

Considering WebAssembly for WebXPRT 4

Earlier this month, we discussed a few of our ideas for possible changes in WebXPRT 4, including new web technologies that may work well in a browser benchmark. Today, we’re going to focus on one of those technologies, WebAssembly, in more detail.

WebAssembly (WASM) is a binary instruction format that works across all modern browsers. WASM provides a sandboxed environment that operates at native speeds and takes advantage of common hardware specs across platforms. WASM’s capabilities offer web developers a great deal of flexibility for running complex client applications in the browser. That level of flexibility may enable workload scenario options for WebXPRT 4 such as gaming, video editing, VR, virtual machines, and image recognition. We’re excited about those possibilities, but it remains to be seen which WASM use cases will meet the criteria we look for when considering new WebXPRT workloads, such as relevancy to real life, consistency and replicability, and the broadest-possible level of cross-browser support.

One WASM workload that we’re investigating is a web-based machine learning workload with TensorFlow for JavaScript (TensorFlow.js). TensorFlow.js offers pre-trained models for a wide variety of tasks, including image classification, object detection, sentence encoding, and natural language processing. TensorFlow.js originally used WebGL technology on the back end, but now it’s possible to run the workload using WASM. We could also use this technology to enhance one of WebXPRT’s existing AI-themed workloads, such as Organize Album using AI or Encrypt Notes and OCR Scan.

We’re can’t yet say that a WASM workload will definitely appear in WebXPRT 4, but the technology is promising. Do you have any experience with WASM, or ideas for WASM workloads? There’s still time for you to help shape the future of WebXPRT 4, so let us know what you think!

Justin

The CloudXPRT v1.1 general release is tomorrow!

We’re happy to announce that CloudXPRT v1.1 will move from beta to general release status tomorrow! The installation packages will be available at the CloudXPRT.com download page and the BenchmarkXPRT GitHub repository. You will find more details about the v1.1 updates in a previous blog post, but the most prominent changes are the consolidation of the five previous installation packages into two packages (one per workload) and added support for Ubuntu 20.04.2 with on-premises testing.

Before you get started with v1.1, please note the following updated system requirements:

  • Ubuntu 20.04.2 or later for on-premises testing
  • Ubuntu 18.04 and 20.04.2 or later for CSP (AWS/Azure/GCP) testing

CloudXPRT is designed to run on high-end servers. Physical nodes or VMs under test must meet the following minimum specifications:

  • 16 logical or virtual CPUs
  • 8 GB of RAM
  • 10 GB of available disk space (50 GB for the data analytics workload)

We have also made significant adjustments to the installation and test configuration instructions in the readmes for both workloads, so please revisit these documents even if you’re familiar with previous test processes.

As we noted during the beta period, we have not observed any significant differences in performance between v1.01 and v1.1, but we haven’t tested every possible test configuration across every platform. If you observe different results when testing the same configuration with v1.01 and v1.1, please send us the details so we can investigate.

If you have any questions about CloudXPRT v1.1, please let us know!

Justin

Check out the other XPRTs:

Forgot your password?