BenchmarkXPRT Blog banner

Category: AMD

Local AI and new frontiers for performance evaluation

Recently, we discussed some ways the PC market may evolve in 2024, and how new Windows on Arm PCs could present the XPRTs with many opportunities for benchmarking. In addition to a potential market shakeup from Arm-based PCs in the coming years, there’s a much broader emerging trend that could eventually revolutionize almost everything about the way we interact with our personal devices—the development of local, dedicated AI processing units for consumer-oriented tech.

AI already impacts daily life for many consumers through technologies such as such as predictive text, computer vision, adaptive workflow apps, voice recognition, smart assistants, and much more. Generative AI-based technologies are rapidly establishing a permanent, society-altering presence across a wide range of industries. Aside from some localized inference tasks that the CPU and/or GPU typically handle, the bulk of the heavy compute power that fuels those technologies has been in the cloud or in on-prem servers. Now, several major chipmakers are working to roll out their own versions of AI-optimized neural processing units (NPUs) that will enable local devices to take on a larger share of the AI load.

Examples of dedicated AI hardware in recently-released or upcoming consumer devices include Intel’s new Meteor Lake NPU, Apple’s Neural Engine for M-series SoCs, Qualcomm’s Hexagon NPU, and AMD’s XDNA 2 architecture. The potential benefits of localized, NPU-facilitated AI are straightforward. On-device AI could reduce power consumption and extend battery life by offloading those tasks from the CPUs. It could alleviate certain cloud-related privacy and security concerns. Without the delays inherent in cloud queries, localized AI could execute inference tasks that operate much closer to real time. NPU-powered devices could fine-tune applications around your habits and preferences, even while offline. You could pull and utilize relevant data from cloud-based datasets without pushing private data in return. Theoretically, your device could know a great deal about you and enhance many areas of your daily life without passing all that data to another party.

Will localized AI play out that way? Some tech companies envision a role for on-device AI that enhances the abilities of existing cloud-based subscription services without decoupling personal data. We’ll likely see a wide variety of capabilities and services on offer, with application-specific and SaaS-determined privacy options.

Regardless of the way on-device AI technology evolves in the coming years, it presents an exciting new frontier for benchmarking. All NPUs will not be created equal, and that’s something buyers will need to understand. Some vendors will optimize their hardware more for computer vision, or large language models, or AI-based graphics rendering, and so on. It won’t be enough for business and consumers to simply know that a new system has dedicated AI processing abilities. They’ll need to know if that system performs well while handling the types of AI-related tasks that they do every day.

Here at the XPRTs, we specialize in creating benchmarks that feature real-world scenarios that mirror the types of tasks that people do in their daily lives. That approach means that when people use XPRT scores to compare device performance, they’re using a metric that can help them make a buying decision that will benefit them every day. We look forward to exploring ways that we can bring XPRT benchmarking expertise to the world of on-device AI.

Do you have ideas for future localized AI workloads? Let us know!

Justin

The evolving PC market brings new opportunities for WebXPRT

Here at the XPRTs, we have to spend time examining what’s next in the tech industry, because the XPRTs have to keep up with the pace of innovation. In our recent discussions about 2024, a major recurring topic has been the potential impact of Qualcomm’s upcoming line of SOCs designed for Windows on Arm PCs.

Now, Windows on Arm PCs are certainly not new. Since Windows RT launched on the Arm-based Microsoft Surface RT in 2012, various Windows on Arm devices have come and gone, but none of them—except for some Microsoft SQ-based Surface devices—have made much of a name for themselves in the consumer market.

The reasons for these struggles are straightforward. While Arm-based PCs have the potential to offer consumers the benefits of excellent battery life and “always-on” mobile communications, the platform has historically lagged Intel- and AMD-based PCs in performance. Windows on Arm devices have also faced the challenge of a lack of large-scale buy-in from app developers. So, despite the past involvement of device makers like ASUS, HP, Lenovo, and Microsoft, the major theme of the Windows on Arm story has been one of very limited market acceptance.

Next year, though, the theme of that story may change. If it does, WebXPRT 4 is well-positioned to play an important part.

At the recent Qualcomm Technology Summit, the company unveiled the new 4nm Snapdragon X Elite SOC, which includes an all-new 12-core Oryon CPU, an integrated Adreno GPU, and an integrated Hexagon NPU (neural processing unit) designed for AI-powered applications. Company officials presented performance numbers that showed the X Elite surpassing the performance of late-gen AMD, Apple, and Intel competitor platforms, all while using less power.

Those are massive claims, and of course the proof will come—or not—only when systems are available for test. (In the past, companies have made similar claims about Windows on Arm advantages, only to see those claims evaporate by the time production devices show up on store shelves.)

Will Snapdragon X Elite systems demonstrate unprecedented performance and battery life when they hit the market? How will the performance of those devices stack up to Intel’s Meteor Lake systems and Apple’s M3 offerings? We don’t yet know how these new devices may shake up the PC market, but we do know that it looks like 2024 will present us with many golden opportunities for benchmarking. Amid all the marketing buzz, buyers everywhere will want to know about potential trade-offs between price, power, and battery life. Tech reviewers will want to dive into the details and provide useful data points, but many traditional PC benchmarks simply won’t work with Windows on ARM systems. As a go-to, cross-platform favorite of many OEMs—that runs on just about anything with a browser—WebXPRT 4 is in a perfect position to provide reviewers and consumers with relevant performance comparison data.

It’s quite possible that 2024 may be the biggest year for WebXPRT yet!

Justin

Helpful tips for WebXPRT 4 results submission

Back in March, we discussed the WebXPRT 4 results submission process and reminded readers that everyone who runs a WebXPRT 4 test is welcome to submit scores for us to consider for publication in the WebXPRT 4 results viewer. Unlike sites that publish every result that users submit, we publish only results that meet our evaluation criteria. Among other things, scores must be consistent with general expectations and must include enough detailed system information to help us assess whether individual scores represent valid test runs. Today, we offer a couple of tips to increase the likelihood that we will publish your WebXPRT 4 test results.

Tip 1: Specify your system’s processor

While testers usually include detailed information for the device, model number, operating system, and browser version fields, we receive many submissions with little to no information about the test system’s processor.

In the picture below, you can see an example of the level of detail that we require to consider a submission. We need the full processor name, including the manufacturer and model number (e.g., Intel Core i9-9980HK, AMD Ryzen 3 1300X, or Apple M1 Max). Note that we do not require the processor speed reported by the system.

Tip 2: Include a valid email address

It is also common for submissions to not include a valid email address. While we understand the privacy concerns related to submitting a personal or corporate email address, we need a valid address that we can use as a point of contact to confirm test-related information when necessary. We don’t use those addresses for any other purposes, such as selling them, sharing them with any third parties, or adding them to a mailing list.

We hope this information explains why we might not have published your results. We look forward to receiving your future score submissions. If you have any questions about the submission process, please let us know!

Justin

Navigating the AIXPRT Community Preview download page just got easier

AIXPRT Community Preview 2 (CP2) has been generating quite a bit of interest among the BenchmarkXPRT Development Community and members of the tech press. We’re excited that the tool has piqued curiosity and that folks are recognizing its value for technical analysis. When talking with folks about test setup and configuration, we keep hearing the same questions:

  • How do I find the exact toolkit or package that I need?
  • How do I find the instructions for a specific toolkit?
  • What test configuration variables are most important for producing consistent, relevant results?
  • How do I know which values to choose when configuring options such as iterations, concurrent instances, and batch size?


In the coming weeks, we’ll be working to provide detailed answers to questions about test configuration. In response to the confusion about finding specific packages and instructions, we’ve redesigned the CP2 download page to make it easier for you to find what you need. Below, we show a snapshot from the new CP2 download table. Instead of having to download the entire CP2 package that includes the OpenVINO, TensorFlow, and TensorRT in TensorFlow test packages, you can now download one package at a time. In the Documentation column, we’ve posted package-specific instructions, so you won’t have to wade through the entire installation guide to find the instructions you need.

AIXPRT Community Preview download table

We hope these changes make it easier for people to experiment with AIXPRT. As always, please feel free to contact us with any questions or comments you may have.

Justin

A new HDXPRT 4 build is available!

A few weeks ago, we announced that a new HDXPRT 4 build, v1.1, was on the way. This past Monday, we published the build on HDXPRT.com.

The new build includes an updated version of HandBrake, the commercial application that HDXPRT uses for certain video conversion tasks. HandBrake 1.2.2 supports hardware acceleration with AMD Video Coding Engine (VCE), Intel Quick Sync, and the NVIDIA video encoder (NVENC). By default, HDXPRT4 v1.1 uses the encoder available through a system’s integrated graphics, but testers can target discrete graphics by changing a configuration file flag before running the benchmark. HDXPRT will then use the encoder provided by the discrete graphics hardware. This configuration setting takes effect only when more than one of the supported encoders (VCE, QSV, or NVENC) is present on the system.

As we mentioned before, in all other respects, the benchmark has not changed. That means that, apart from a scenario where a tester changes the targeted graphics hardware, scores from previous HDXPRT 4 builds will be comparable to those from the new build.

The updated HDXPRT 4 User Manual contains additional information and instructions for changing the configuration file flag. Please contact us if you have any questions about the new build. Happy testing!

Justin

An updated HDXPRT 4 build is on the way

HandBrake recently released a new version, v1.2.2, of their video conversion software. Among other improvements, the new version includes support for certain AMD (VCE) and NVIDIA (NVENC) hardware-accelerated video encoders. Because we include HandBrake as one of the commercial applications in the HDXPRT installer package, and because we want to keep HDXPRT 4 up-to-date for testers, we’ve put together a new HDXPRT 4 build: v1.1.  It includes HandBrake 1.2.2’s new capabilities, and we’re currently testing it in the lab.

With the new build, testers will be able to choose whether HDXPRT’s HandBrake tasks target a system’s integrated or discrete graphics cards by changing a flag called “UseIntegrated” in the config file. In HDXPRT 4 v1.1, the flag is set to “true” by default, directing HandBrake to use the codec provided by the system’s integrated graphics hardware. On the other hand, if a system has both integrated and discrete graphics available, and a user sets the flag to “false,” HandBrake will use the codec provided by the discrete graphics.

This update allows users to compare the video conversion performance of different video codecs on the same system. In all other respects, the benchmark has not changed. So apart from a scenario where a tester changes the targeted graphics hardware, scores from previous HDXPRT 4 builds will be comparable to those from the new build.

We’ll let the community know as soon as the new build is available, and we’ll update the HDXPRT 4 User Manual to reflect the changes.

If you have any questions about the upcoming HDXPRT 4 build, please let us know!

Justin

Check out the other XPRTs:

Forgot your password?