BenchmarkXPRT Blog banner

Tag Archives: machine learning

A note about AIXPRT

Recently, a member of the tech press asked us about the status of AIXPRT, our benchmark that measures machine learning inference performance. We want to share our answer here in the blog for the benefit of other readers. The writer said it seemed like we had not updated AIXPRT in a long time, and wondered whether we had any immediate plans to do so.

It’s true that we haven’t updated AIXPRT in quite some time. Unfortunately, while a few tech press publications and OEM labs began experimenting with AIXPRT testing, the benchmark never got the traction we hoped for, and we’ve decided to invest our resources elsewhere for the time being. The AIXPRT installation packages are still available for people to use or reference as they wish, but we have not updated the benchmark to work with the latest platform versions (OpenVINO, TensorFlow, etc.). It’s likely that several components in each package are out of date.

If you are interested in AIXPRT and would like us to bring it up to date, please let us know. We can’t promise that we’ll revive the benchmark, but your feedback could be a valuable contribution as we try to gauge the benchmarking community’s interest.

Justin

The AIXPRT learning tool is now live (and a CloudXPRT version is on the way)!

We’re happy to announce that the AIXPRT learning tool is now live! We designed the tool to serve as an information hub for common AIXPRT topics and questions, and to help tech journalists, OEM lab engineers, and everyone who is interested in AIXPRT find the answers they need in as little time as possible.

The tool features four primary areas of content:

  • The Q&A section provides quick answers to the questions we receive most from testers and the tech press.
  • The AIXPRT: the basics section describes specific topics such as the benchmark’s toolkits, networks, workloads, and hardware and software requirements.
  • The testing and results section covers the testing process, metrics, and how to publish results.
  • The AI/ML primer provides brief, easy-to-understand definitions of key AI and ML terms and concepts for those who want to learn more about the subject.

The first screenshot below shows the home screen. To show how some of the popup information sections appear, the second screenshot shows the Inference tasks (workloads) entry in the AI/ML Primer section. 

We’re excited about the new AIXPRT learning tool, and we’re also happy to report that we’re working on a version of the tool for CloudXPRT. We hope to make the CloudXPRT tool available early next year, and we’ll post more information in the blog as we get closer to taking it live.

If you have any questions about the tool, please let us know!

Justin

We’re working on an AIXPRT learning tool

For anyone interested in learning more about AIXPRT, the Introduction to AIXPRT white paper provides detailed information about its toolkits, workloads, system requirements, installation, test parameters, and results. However, for AIXPRT.com visitors who want to find the answers to specific AIXPRT-related questions quickly, a white paper can be daunting.

Because we want tech journalists, OEM lab engineers, and everyone who is interested in AIXPRT to be able to find the answers they need in as little time as possible, we’ve decided to develop a new learning tool that will serve as an information hub for common AIXPRT topics and questions.

The new learning tool will be available online through our site. It will offer quick bites of information about the fundamentals of AIXPRT, why the benchmark matters, the benefits of AIXPRT testing and results, machine learning concepts, key terms, and practical testing concerns.

We’re still working on the tool’s content and design. Because we’re designing this tool for you, we’d love to hear the topics and questions you think we should include. If you have any suggestions, please let us know!

Justin

Potential web technology additions for WebXPRT 4

A few months ago, we invited readers to send in their thoughts and ideas about web technologies and workload scenarios that may be a good fit for the next WebXPRT. We’d like to share a few of those ideas today, and we invite you to continue to send your feedback. We’re approaching the time when we need to begin firming up plans for a WebXPRT 4 development cycle in 2021, but there’s still plenty of time for you to help shape the future of the benchmark.

One of the most promising ideas for WebXPRT 4 is the potential addition of one or more WebAssembly (WASM) workloads. WASM is a low-level, binary instruction format that works across all modern browsers. It offers web developers a great deal of flexibility and provides the speed and efficiency necessary for running complex client applications in the browser. WASM enables a variety of workload scenario options, including gaming, video editing, VR, virtual machines, image recognition, and interactive educational content.

In addition, the Chrome team is dropping Portable Native Client (PNaCL) support in favor of WASM, which is why we had to remove a PNaCL workload when updating CrXPRT 2015 to CrXPRT 2. We generally model CrXPRT workloads on existing WebXPRT workloads, so familiarizing ourselves with WASM could ultimately benefit more than one XPRT benchmark.

We are also considering adding a web-based machine learning workload with TensorFlow for JavaScript (TensorFlow.js). TensorFlow.js offers pre-trained models for a wide variety of tasks including image classification, object detection, sentence encoding, natural language processing, and more. We could also use this technology to enhance one of WebXPRT’s existing AI-themed workloads, such as Organize Album using AI or Encrypt Notes and OCR Scan.

Other ideas include using a WebGL-based workload to target GPUs and investigating ways to incorporate a battery life test. What do you think? Let us know!

Justin

Adapting to a changing tech landscape

The BenchmarkXPRT Development Community started almost 10 years ago with the development of the High Definition Experience & Performance Ratings Test, also known as HDXPRT. Back then, we distributed the benchmark to interested parties by mailing out physical DVDs. We’ve come a long way since then, as testers now freely and easily access six XPRT benchmarks from our site and major app stores.

Developers, hardware manufacturers, and tech journalists—the core group of XPRT testers—work within a constantly changing tech landscape. Because of our commitment to providing those testers with what they need, the XPRTs grew as we developed additional benchmarks to expand the reach of our tools from PCs to servers and all types of notebooks, Chromebooks, and mobile devices.

As today’s tech landscape continues to evolve at a rapid pace, our desire to play an active role in emerging markets continues to drive us to expand our testing capabilities into areas like machine learning (AIXPRT) and cloud-first applications (CloudXPRT). While these new technologies carry the potential to increase efficiency, improve quality, and boost the bottom line for companies around the world, it’s often difficult to decide where and how to invest in new hardware or services. The ever-present need for relevant and reliable data is the reason many organizations use the XPRTs to help make confident choices about their company’s future tech.

We just released a new video that helps to explain what the XPRTs provide and how they can play an important role in a company’s tech purchasing decisions. We hope you’ll check it out!

We’re excited about the continued growth of the XPRTs, and we’re eager to meet the challenges of adapting to the changing tech landscape. If you have any questions about the XPRTs or suggestions for future benchmarks, please let us know!

Justin

More details about CloudXPRT’s workloads

About a month ago, we posted an update on the CloudXPRT development process. Today, we want to provide more details about the three workloads we plan to offer in the initial preview build:

  • In the web-tier microservices workload, a simulated user logs in to a web application that does three things: provides a selection of stock options, performs Monte-Carlo simulations with those stocks, and presents the user with options that may be of interest. The workload reports performance in transactions per second, which testers can use to directly compare IaaS stacks and to evaluate whether any given stack is capable of meeting service-level agreement (SLA) thresholds.
  • The machine learning (ML) training workload calculates XGBoost model training time. XGBoost is a gradient-boosting framework  that data scientists often use for ML-based regression and classification problems. The purpose of the workload in the context of CloudXPRT is to evaluate how well an IaaS stack enables XGBoost to speed and optimize model training. The workload reports latency and throughput rates. As with the web-tier microservices workload, testers can use this workload’s metrics to compare IaaS stack performance and to evaluate whether any given stack is capable of meeting SLA thresholds.
  • The AI-themed container scaling workload starts up a container and uses a version of the AIXPRT harness to launch Wide and Deep recommender system inference tasks in the container. Each container represents a fixed amount of work, and as the number of Wide and Deep jobs increases, CloudXPRT launches more containers in parallel to handle the load. The workload reports both the startup time for the containers and the Wide and Deep throughput results. Testers can use this workload to compare container startup time between IaaS stacks; optimize the balance between resource allocation, capacity, and throughput on a given stack; and confirm whether a given stack is suitable for specific SLAs.

We’re continuing to move forward with CloudXPRT development and testing and hope to add more workloads in subsequent builds. Like most organizations, we’ve adjusted our work patterns to adapt to the COVID-19 situation. While this has slowed our progress a bit, we still hope to release the CloudXPRT preview build in April. If anything changes, we’ll let folks know as soon as possible here in the blog.

If you have any thoughts or comments about CloudXPRT workloads, please feel free to contact us.

Justin

Check out the other XPRTs:

Forgot your password?