

Introduction to AIXPRT

AIXPRT is a benchmark tool that makes it easier to evaluate a system's

machine learning inference performance by running common image-

classification, object-detection, and recommender system workloads.

March 26, 2020

A Principled Technologies white paper 2 Introduction to AIXPRT

Table of contents

Introduction ... 3

The toolkits and workloads .. 3

Package selector tool .. 3

Package download table ... 5

System requirements and installation ... 6

Test parameters ... 6

Batch size ... 6

Configuring inference batch size in AIXPRT ..7

Levels of precision ... 7

FP32, FP16, and INT8 ...8

Configuring the level of precision ...8

Concurrent instances .. 9

Setting the number of concurrent instances .. 10

Default number of requests... 10

Using alternate test configuration files .. 12

After running the benchmark .. 14

Understanding AIXPRT results .. 14

Browsing the results table ... 15

Submitting results ... 15

Accessing the source code .. 16

Future development ... 16

Conclusion.. 17

About the BenchmarkXPRT family .. 17

The community model .. 17

A Principled Technologies white paper 3 Introduction to AIXPRT

Introduction

This paper provides an overview of how to access, configure, and use AIXPRT for testing. AIXPRT is an AI

benchmark tool that lets you evaluate a system's machine learning (ML) inference performance by running

common image-classification, object-detection, and recommender system workloads.

In this document, you will find details on AIXPRT toolkits and workloads, system requirements, choosing and

downloading an installation package, adjusting test parameters, using alternative test configuration files, and

understanding and submitting AIXPRT results.

The toolkits and workloads

AIXPRT includes support for the Intel OpenVINO, TensorFlow, and NVIDIA TensorRT toolkits to run image-

classification and object-detection workloads with the ResNet-50 and SSD-MobileNet v1 networks, as well as a

Wide and Deep recommender system workload with the Apache MXNet toolkit. The OpenVINO, TensorFlow,

and TensorRT packages are available for Windows and Ubuntu, while the MXNet package is available for only

Ubuntu. The test reports FP32, FP16, and INT8 levels of precision.

PACKAGE SELECTOR TOOL

AI workloads are now relevant to all types of hardware, from servers to laptops to IOT devices, so we

intentionally designed AIXPRT to support a wide range of potential hardware, toolkit, and workload

configurations. This approach provides AIXPRT testers with a tool that is flexible enough to adapt to a variety

of environments. The downside is that the number of options makes it fairly complicated to determine which

AIXPRT download package suits your needs.

To help testers navigate this complexity, we’ve developed an interactive package selector tool. Testers select

options in five categories: operating system, host hardware, toolkit, target hardware, and workload. They can

proceed in any order but must make a selection for every category. Because not all combinations work

together, each selection the tester makes eliminates some options in the remaining categories. Figure 1

shows the operating system category.

https://www.principledtechnologies.com/benchmarkxprt/aixprt/
https://www.principledtechnologies.com/benchmarkxprt/aixprt/guide.php

Figure 1: Designating the operating system with the AIXPRT package selector tool.

After a tester selects an option, a check mark appears on the category icon, and the selection they have made

appears in the category box (e.g., TensorFlow in the Toolkit category). This shows testers which categories

they’ve completed and the selections they’ve made. After a tester completes more than one category, a Start

over button appears in the lower-left corner. Clicking this button clears all selections and gives testers a clean

slate. Figure 2 shows the toolkit category, with the operating system and host hardware categories having

already been completed.

A Principled Technologies white paper 5 Introduction to AIXPRT

Figure 2: Choosing a toolkit with the AIXPRT package selector tool.

Once you’ve completed all five categories, a Download button appears in the lower-right corner. When you

click this, a popup appears that provides a link for the correct download package and associated readme file.

PACKAGE DOWNLOAD TABLE

Testers who know exactly which package they need can bypass the tool and go directly to the download

table.

https://www.principledtechnologies.com/benchmarkxprt/aixprt/download.php
https://www.principledtechnologies.com/benchmarkxprt/aixprt/download.php

A Principled Technologies white paper 6 Introduction to AIXPRT

System requirements and installation

AIXPRT test systems must be running either Ubuntu 18.04 LTS or Windows 10. The minimum CPU and GPU

requirements vary by toolkit. Testers can find the package-specific system requirements and installation

instructions for each framework in the readme files included in the AIXPRT install package. The readme files

for each respective framework in the download packages are located here:

• AIXPRT_1.0.1_OpenVINO_Windows\AIXPRT\Modules\Deep-Learning

• AIXPRT_1.0_OpenVINO_Ubuntu\AIXPRT\Modules\Deep-Learning

• AIXPRT_1.0_Tensorflow_Windows\AIXPRT\Modules\Deep-Learning

• AIXPRT_1.0_Tensorflow_Ubuntu\AIXPRT\Modules\Deep-Learning

• AIXPRT_1.0_TensorRT_Windows\AIXPRT\Modules\Deep-Learning

• AIXPRT_1.0_TensorRT_Ubuntu\AIXPRT\Modules\Deep-Learning

• AIXPRT_1.0_MXNet_Ubuntu\AIXPRT\Modules\Deep-Learning

You can also access the readme files in the AIXPRT Resources GitHub repository. Please be sure to read the

“Known Issues” section in the readme, as there may be issues relevant to your specific configuration.

NOTE: The OpenVINO on Windows package includes a precompiled version of OpenVINO for easy installation

on Windows via a few quick commands, and a script that installs the necessary OpenVINO dependencies.

Test parameters

AIXPRT allows testers to adjust four key test parameters: batch size, level of precision, number of concurrent

instances, and default number of requests. Below, we discuss each parameter and describe how to adjust it

with pre-test configuration steps.

BATCH SIZE

Note: The term “batch size” means one thing in ML inference and something different in ML training. AIXPRT

tests inference, so we’ll discuss on that meaning of the term.

In ML inference, batch size refers to the number of combined input samples (e.g., images) that the tester

wants the algorithm to process simultaneously. When testing inference performance, testers adjust batch size

to achieve an optimal balance between latency (speed) and throughput (the total amount processed over

time).

Because of the lighter demands of processing one image at a time, Batch 1 often produces the fastest latency

times, and can be a good indicator of how a system handles near-real-time inference demands from client

devices. Larger batch sizes (8, 16, 32, 64, or 128) can result in greater throughput on test hardware that is

capable of completing more inference work in parallel. However, this increased throughput can come at the

expense of latency. Running concurrent inferences via larger batch sizes is a good way to gauge the maximum

throughput a server can handle.

https://github.com/BenchmarkXPRT/Public-AIXPRT-Resources

A Principled Technologies white paper 7 Introduction to AIXPRT

Configuring inference batch size in AIXPRT

A good practice when starting to explore batch size is to match it to the number of cores under test (e.g.,

Batch 8 for eight cores). To adjust batch size in AIXPRT, testers edit the configuration files located in

AIXPRT/Config. To represent a spectrum of common tunings, AIXPRT tests Batches 1, 2, 4, 8, 16, and 32 by

default.

The screenshot below shows part of a sample config file. The numbers in the lines immediately below

“batch_sizes” indicate the batch size. This test configuration would run tests using both Batch 1 and Batch 2.

To change batch size, simply replace those numbers and save the changes.

LEVELS OF PRECISION

Another key test variable is the level of precision. In the context of ML inference, this refers to the computer

number format (FP32, FP16, or INT8) representing the weights (parameters) a network model uses when

performing the calculations necessary for inference tasks.

Higher levels of precision help decrease the number of false positives and false negatives, but can increase the

amount of time, memory bandwidth, and computational power necessary to achieve accurate results. Lower

levels of precision typically (but not always) enable the model to process inputs more quickly while using less

memory and processing power. However, they can allow a degree of inaccuracy that is unacceptable for

certain real-world applications.

A Principled Technologies white paper 8 Introduction to AIXPRT

For example, a high precision level might be appropriate for computer vision applications in the medical field,

where the benefits of hyper-accurate object detection and classification far outweigh the benefit of saving a

few milliseconds. On the other hand, a low precision level could work well for vision-based sensors in the

security industry, where alert time is critical and monitors simply need to know that an animal or a human

triggered a motion-activated camera.

FP32, FP16, and INT8

In AIXPRT, we can instruct the network models to use one of three levels of precision: FP32, FP16, or INT8.

• FP32 refers to single-precision (32-bit) floating point format, a number format that can represent an

enormous range of values with a high degree of mathematical precision. Most CPUs and GPUs handle

32-bit floating point operations very efficiently, and many programs that use neural networks,

including AIXPRT, use FP32 precision by default.

• FP16 refers to half-precision (16-bit) floating point format, a number format that uses half the number

of bits as FP32 to represent a model’s parameters. A lower level of precision than FP32, FP16 still

provides a great enough numerical range to successfully perform many inference tasks. FP16 uses less

memory than FP32 and is often faster.

• INT8 refers to the 8-bit integer data type. INT8 data, which has a smaller numeric range than floating

point data, is a good choice for certain types of calculations. Depending on the model, using INT8

precision can significantly improve latency and throughput over floating point precision, but accuracy

can decrease. This is not always the case, however. Researchers have shown that a process called

quantization, which involves approximating continuous values with discrete counterparts, can enable

some networks, such as ResNet-50, to run INT8 precision without any significant loss of accuracy.

Configuring the level of precision

The screenshot below shows part of the same sample file we used in the batch size section. The value in the

“precision” row indicates the precision setting. This test configuration would run tests using INT8. To change

the precision, a tester simply replaces that value with “fp32” or “fp16” and saves the changes.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.sqlr.doc/ids_sqr_121.htm
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

A Principled Technologies white paper 9 Introduction to AIXPRT

Note that while decreasing precision from FP32 to FP16 or INT8 often improves throughput and inference

speed overall, this is not always true. Many other factors can affect ML performance, including (but not limited

to) the complexity of the model, the presence of specific ML optimizations for the hardware under test, and

any inherent limitations of the target CPU or GPU.

CONCURRENT INSTANCES

In the context of ML inference, the number of concurrent instances refers to how many instances of the

network model (ResNet-50, SSD-MobileNet, etc.) the benchmark runs simultaneously.

By default, AIXPRT toolkits run one instance at a time and distribute the compute load according to the

characteristics of the CPU or GPU under test, as well as any relevant optimizations or accelerators in the

toolkit’s reference library. By increasing the number of concurrent instances, a tester can use multiple CPUs or

GPUs to run multiple instances of a model simultaneously, usually to increase throughput.

With multiple concurrent instances, a tester can leverage additional compute resources to achieve potentially

higher throughput while maintaining latency targets.

In the current version of AIXPRT, all available toolkits let testers run multiple concurrent instances. OpenVINO

and TensorRT automatically allocate hardware for each instance and don’t let testers make manual

adjustments. TensorFlow and MXNet require testers to manually bind instances to specific hardware.

A Principled Technologies white paper 10 Introduction to AIXPRT

Setting the number of concurrent instances

In our sample config file, the value in the “concurrent instances” row indicates how many concurrent

instances will be operating during the test. In this example, the number is one. To change that value, a tester

simply replaces it with the desired number and saves the changes.

DEFAULT NUMBER OF REQUESTS

The final key test configuration variable in AIXPRT is the default number of requests, which appears in the

same config file that contains the batch size, level of precision, and number of concurrent instances settings.

The default setting for this variable differs depending on the AIXPRT test package you choose.

The total_requests variable specifies how many inference requests AIXPRT will send to a network (e.g.,

ResNet-50) during one test iteration at a given batch size (e.g., Batch 1, 2, 4, etc.). This simulates the inference

demand that the end users place on the system. Because we designed AIXPRT to run on different types of

hardware, we set the default number of requests for each test package to suit the most likely hardware

environment on which that package will run.

For example, testing with OpenVINO on Windows aligns more closely with a consumer device (desktop or

laptop) scenario than testing with OpenVINO on Ubuntu, which is more typical of server/datacenter testing.

Those testing consumer devices require a much lower inference demand than those testing servers, and the

default total_requests settings for the two packages reflect that. The default for the OpenVINO on Windows

package is 500, while the default for the OpenVINO on Ubuntu package is 5,000.

A Principled Technologies white paper 11 Introduction to AIXPRT

Setting the number of requests so low that a system finishes each workload in less than 1 second can produce

high run-to-run variation, so our default settings represent a lower boundary that will work well for common

test scenarios.

Finding the optimal combination of machine learning variables for each scenario is often a matter of trial and

error, and the following default settings represent what we think is a reasonable starting point for each test

package:

• MXNet: 1,000

• OpenVINO on Ubuntu: 5,000

• OpenVINO on Windows: 500

• TensorFlow on Ubuntu: 100

• TensorFlow on Windows: 10

• TensorRT on Ubuntu: 5,000

• TensorRT on Windows: 500

Testers can adjust these variables in the config file to meet their needs. To do so, first locate and open the

JSON test configuration file in the AIXPRT/Config directory. Below, we show a section of the default config file

(CPU_INT8.json) for the OpenVINO on Windows test package (AIXPRT_1.0.1_OpenVINO_Windows.zip). For

each batch size, the total_requests setting appears at the bottom of the list of configurable variables. In this

case, the default setting Is 500. Change the total_requests numerical value for each batch size in the config

file, save your changes, and close the file.

A Principled Technologies white paper 12 Introduction to AIXPRT

Note that if you are running multiple concurrent instances, OpenVINO and TensorRT automatically distribute

the number of requests among the instances. MXNet and TensorFlow testers must manually allocate the

instances in the config file. You can find an example of how to structure manual allocation here. We hope to

make this process automatic for all toolkits in a future update.

Using alternate test configuration files

While AIXPRT testers can adjust key variables by editing the JSON file in the AIXPRT/Config directory, editing

the variables manually can take some time, and testers don’t always know the appropriate values for their

system. To address both issues, we provide a selection of alternative config files in the AIXPRT Resources

GitHub repository. Testers can download these files and drop them into the AIXPRT/Config directory to

quickly and easily change the parameters of a test.

In the GitHub repository, we’ve organized the available config files first by operating system (Linux_Ubuntu

and Windows) and then by vendor (All, Intel, and NVIDIA). Within each section, we offer preconfigured JSON

files set up for several scenarios, such as running with multiple concurrent instances on a system’s CPU or

https://github.com/BenchmarkXPRT/Public-AIXPRT-Resources/blob/master/Alternative_test_Config_files/Linux_Ubuntu/All/CPU_FP32_128Core_2NUMA_node_machine.json#L13
https://github.com/BenchmarkXPRT/Public-AIXPRT-Resources

A Principled Technologies white paper 13 Introduction to AIXPRT

GPU, running with FP32 precision instead of FP16, etc. The screenshot below shows the preconfigured files

that are currently available for systems running Ubuntu on Intel hardware.

Because potential AIXPRT use cases cut across a wide range of hardware segments, including desktops, edge

devices, and servers, not all AIXPRT workloads and configs will be applicable to each segment. In many cases,

the ideal combination of test configuration variables remains an open question for ongoing research.

However, we hope the alternative configuration files will help by giving testers a starting place.

Please note that each alternative test configuration file you want to run should replace the existing default

config file. If multiple config files are present, AIXPRT will run all of the configurations and generate a separate

result for each. More information about the config files, including detailed instructions for handling the files, is

available in the EditConfig.md document in the GitHub repository.

A Principled Technologies white paper 14 Introduction to AIXPRT

After running the benchmark

UNDERSTANDING AIXPRT RESULTS

To understand AIXPRT results at a high level, it’s important to revisit the core purpose of the benchmark. The

AIXPRT bundled toolkits measure inference latency (the speed of processing) and throughput (the number of

inputs a system processes in a given time period) for image recognition (ResNet-50), object detection (SSD-

MobileNet v1), and recommender system (Wide and Deep) tasks. Testers have the option of adjusting

variables such as batch size (the number of input samples to process simultaneously) to try and increase

throughput, but greater throughput can come at the expense of increased per-task latency. In real-time or

near real-time use cases such as performing image recognition on individual photos a camera is capturing,

lowering latency improves the user experience. In other cases, such as performing image recognition on a

large library of photos, increasing throughput might be more beneficial; designating larger batch sizes or

running concurrent instances can allow the overall workload to complete more quickly.

The dynamics of these performance tradeoffs ensure that no single score could represent good performance

on all machine learning scenarios. Some testers might prioritize lower latency, while others would sacrifice

latency to achieve the greater throughput that their use cases demand.

For each completed run, testers can find two files in the AIXPRT/Results folder: (1) a JSON results file with

latency and throughput numbers and (2) a CSV raw results file that includes values for each AI task

configuration (e.g., ResNet-50, Batch1, on CPU). Parsing and consolidating the raw data can take some time,

and we’re developing a results file parsing tool to make the job much easier.

Currently, the results parsing tool is available in only the AIXPRT OpenVINO on Windows package, though we

hope to add it to more packages soon. The tool produces a summary (example below) that makes it easier to

quickly identify relevant comparison points such as maximum throughput and minimum latency.

In addition to the summary, the tool displays the throughput and latency results for each AI task configuration

the benchmark tested. AIXPRT runs each AI task multiple times and reports the average inference throughput

and corresponding latency percentiles.

A Principled Technologies white paper 15 Introduction to AIXPRT

Detailed instructions for using the tool, which requires running a single command, are in the AIXPRT

OpenVINO on Windows readme.

BROWSING THE RESULTS TABLE

At AIXPRT.com, interested parties can view test results published by the BenchmarkXPRT Development

Community. The following tips will help visitors navigate the results viewer:

• Click the tabs at the top of the table to switch from ResNet-50 network results to SSD-MobileNet or

Wide and Deep network results.

• Click the header of any column to sort the data on that variable. One click sorts A-Z and two clicks sort

Z-A.

• Click the link in the Source column to visit a detailed page on that result. The page contains additional

test configuration and system hardware information and lets you download results files.

• You can filter results in categories such as framework, target hardware, batch size, and precision, and

can designate minimum throughput and maximum latency scores. When you select a value from a

drop-down menu or enter text, the results change immediately to reflect the filter.

• You can search for variables such as processor vendor or processor speed.

• The viewer displays eight results per page by default. You can change this to 16, 48, or Show all.

SUBMITTING RESULTS

We invite and encourage all AIXPRT testers to submit results from their testing for inclusion in the public

results viewer. Please follow the process below to prepare results for submission:

1. After a benchmark run completes, locate the XML results file the benchmark generates at C:\Program

Files (x86)\HDXPRT\Reports\Name of Run\Name of Run_Results.xml.

2. Make a copy of the results file.

3. Create an email message to the BenchmarkXPRT Community Administrator, using the

address BenchmarkXPRTsupport@principledtechnologies.com and the subject “AIXPRT Results

Submission.”

4. Attach the results file to the message.

https://www.principledtechnologies.com/benchmarkxprt/aixprt/2019/results
mailto:benchmarkxprtsupport@principledtechnologies.com

A Principled Technologies white paper 16 Introduction to AIXPRT

5. In the body of the message, specify the name of your company and the person who conducted the

test.

6. Be sure that the email reply-to address you specify is a valid reply address inside your organization.

Before publishing the results to the public database, we will verify the tester’s identity and validate the

results. We will notify you if we publish your results.

Accessing the source code

The AIXPRT source code is available to the public via GitHub. As we’ve discussed in the past, publishing XPRT

source code is part of our commitment to making the XPRT development process as transparent as possible.

With other XPRT benchmarks, we’ve made the source code available to only community members. With

AIXPRT, we have released the source code more widely. By allowing all interested parties, not just community

members, to download and review our source code, we’re taking tangible steps to improve openness and

honesty in the benchmarking industry and are encouraging the kind of constructive feedback that helps to

ensure that the XPRTs continue to contribute to a level playing field.

Traditional open-source models encourage developers to change products and even take them in new and

different directions. Because benchmarking requires a product that remains static to enable valid

comparisons over time, we allow people to download the source code and submit potential workloads for

future consideration, but we reserve the right to control derivative works. This discourages a situation where

someone publishes an unauthorized version of the benchmark and calls it an “XPRT.”

We encourage you to download and review the source and send us any feedback you may have. Your

questions and suggestions may influence future versions of AIXPRT.

Future development

With four separate machine learning toolkits on their own development schedules, three workloads, and a

wide range of possible configurations and use cases, AIXPRT has more moving parts than any of the XPRT

benchmark tools to date. Because there are so many different components, and because we want AIXPRT to

provide consistently relevant evaluation data in the rapidly evolving AI and machine learning spaces, we

anticipate a cadence of AIXPRT updates in the future that will be more frequent than the schedules we’ve

used for other XPRTs in the past. With that expectation in mind, we want to let AIXPRT testers know that when

we release an AIXPRT update, they can expect minimized disruption, consideration for their testing needs,

and clear communication.

Each AIXPRT toolkit (Intel OpenVINO, TensorFlow, NVIDIA TensorRT, and Apache MXNet) is on its own

development schedule, and we won’t always have a lot of advance notice when new versions are on the way.

Hypothetically, a new version of OpenVINO could release one month, and a new version of TensorRT just two

months later. Thankfully, the modular nature of AIXPRT’s installation packages ensures that we won’t need to

revise the entire AIXPRT suite every time a toolkit update goes live. Instead, we’ll update each package

individually when necessary. This means that if you only test with a single AIXPRT package, updates to the

other packages won’t affect your testing. For us to maintain AIXPRT’s relevance, there’s unfortunately no way

to avoid all disruption, but we’ll work to keep it to a minimum.

https://github.com/BenchmarkXPRT/AIXPRT

A Principled Technologies white paper 17 Introduction to AIXPRT

As we move forward, when software compatibility issues force us to update an AIXPRT package, we may

discover that the update has a significant effect on results. If we find that results from the new package are no

longer comparable to those from previous tests, we’ll share the differences that we’re seeing in our lab. As

always, we will use documentation and versioning to make sure that testers know what to expect and avoid

confusion about which package to use.

When we update any package, we’ll make sure to communicate any updates in the new build as clearly as

possible. We’ll document all changes thoroughly in the package readmes, and we’ll talk through significant

updates in the XPRT blog.

Conclusion

We hope this paper has answered any questions you may have about AIXPRT. For more information, visit us at

AIXPRT.com and BenchmarkXPRT.com. If you cannot find the answer to your question, you need help with

AIXPRT, or you have suggestions on ways to improve AIXPRT, send an email to our team at

BenchmarkXPRTsupport@principledtechnologies.com.

About the BenchmarkXPRT family

The BenchmarkXPRT tools are a set of apps that help you test how well devices do the kinds of things you do

every day. In addition to AIXPRT, the BenchmarkXPRT suite currently comprises the following tools:

• CloudXPRT, a cloud benchmark accurately measures the performance of modern, cloud-first

applications deployed on modern infrastructure as a service (IaaS) platforms, whether those

platforms are on-premises, hosted elsewhere, or some combination of the two (hybrid clouds)

• WebXPRT, a browser benchmark that compares the performance of almost any web-enabled device

• HDXPRT, a benchmark to test how well Windows PCs handle real-world apps

• TouchXPRT, a Universal Windows Platform app to test the responsiveness of Windows 10 devices

• CrXPRT, an app to test the responsiveness and battery life of Chromebooks

• MobileXPRT, an app to test the responsiveness of Android devices

We designed the apps to test a wide range of devices on a level playing field. When you look at results from

XPRTs, you get unbiased, fair product comparison information.

THE COMMUNITY MODEL

We built BenchmarkXPRT around a unique community model. Community membership is open to anyone,

and there are many different ways to participate.

Members of the BenchmarkXPRT Development Community are involved in every step of the process. They

give input on the design of upcoming versions, contribute source code, and help test the resulting

implementation. Community members have access to the source code and access to early releases in the

form of community previews.

The community helps us avoid the ivory tower syndrome. Diversity of input during the design process makes

the tests more representative of real-world activity. Giving community members access to the source code

both improves the implementation of the design and increases confidence in the code.

https://www.principledtechnologies.com/benchmarkxprt/blog/
http://www.aixprt.com/
http://www.benchmarkxprt.com/
mailto:BenchmarkXPRTsupport@principledtechnologies.com
https://www.principledtechnologies.com/benchmarkxprt/cloudxprt/
https://www.principledtechnologies.com/benchmarkxprt/webxprt/
https://www.principledtechnologies.com/benchmarkxprt/hdxprt/
https://www.principledtechnologies.com/benchmarkxprt/touchxprt/
https://www.principledtechnologies.com/benchmarkxprt/crxprt/
https://www.principledtechnologies.com/benchmarkxprt/mobilexprt/

A Principled Technologies white paper 18 Introduction to AIXPRT

The community model differs from the open source model primarily by controlling derivative works. It is

important that the BenchmarkXPRT benchmarks return consistent results. If the testing community calls

different derivative works by the same name, the result would be that test results would not be comparable.

That would limit, if not destroy, the tools’ effectiveness.

If you are not currently a community member, we encourage you to join! Our community is open to everyone,

from software developers to interested consumers. Not only will you get early releases of future XPRTs, but

you will also be able to download the source code (available to members only) and influence the future of the

tools. Register now, or for more information, see the BenchmarkXPRT FAQ.

http://www.principledtechnologies.com/hdxprt/forum/register.php
http://www.principledtechnologies.com/benchmarkxprt/faq

