BenchmarkXPRT Blog banner

Tag Archives: LSTM

WebXPRT 5: The workload lineup

The WebXPRT 5 development process heading into the final stretch, so we’d like to share more information about the workloads you’re likely to see in the WebXPRT 5 Preview release—and when that release may be available. We’re still actively testing candidate builds, studying results from multiple system tests, and so on, so some details could change. That said, we’re now close enough to provide a clearer picture of the workload lineup.

Core workloads

WebXPRT 5 will likely include the following seven workloads:  

  • Video Background Blur with AI. Blurs the background of a video call using an AI-powered Segmentation model.
  • Photo Effects. Applies a filter to six photos using the Canvas API.
  • Detect Faces with AI. Detects faces and organizes photos in an album using computer vision (OpenCV.js with Caffe Model).
  • Image Classification with AI. Labels images in an album using machine learning (OpenCV.js and ML Classify with the SqueezeNet model).
  • Document Scan with AI. Scans a document image and converts it to text using ML-based OCR (Wasm with LSTM).
  • School Science Project. Processes a DNA sequencing task using Regex and String manipulation.
  • Homework Spellcheck. Spellchecks a document using Typo.js and Web Workers.

The sub-scores for each of these tests will contribute to WebXPRT 5’s main overall score. (We’ll discuss scoring in future blogs.)

Experimental workloads

We’re currently planning to include an experimental workload section, something we’ve long discussed, in WebXPRT 5. Workloads in this section will use cutting-edge browser technologies that may not be compatible with the same broad range of platforms and devices as the technologies in WebXPRT 5’s core workloads. For that reason, we will not include the scores from the experimental section—in the Preview build and future releases—in WebXPRT 5’s main overall score.

In addition, WebXPRT 5’s experimental workloads will be completely optional.

Moving forward, WebXPRT’s experimental workload section will provide users with a straightforward way to learn how well certain browsers or systems handle new browser-based technologies (e.g., new web apps or AI capabilities). We’ll benefit from the ability to offer workloads for large-scale testing and user feedback before committing to including them as core WebXPRT workloads. Because future experimental workloads will run independently of the main test, we can add them without affecting the main WebXPRT score or requiring users to repeat testing to obtain comparable scores. We think it will be a win-win scenario in many respects.  

We’re still evaluating whether we can finish the first experimental workload in time to include it in the WebXPRT 5 Preview release, but we will definitely have at least the section and the framework for adding such a workload. When we are confident that an experimental workload is ready to go, we’ll share more information here in the blog and be all set up to incorporate it.

Timeline

If all goes well, we hope to publish the WebXPRT 5 Preview very soon, followed by a general release in early 2026. If that timeline changes significantly, we’ll provide an update here in the blog as soon as possible.

What about an “AI score”?

We’re still discussing the concept of a stand-alone WebXPRT 5 “AI score,” and we go back and forth on it. That score would combine WebXPRT’s AI-related subscores into a single score for use in AI capability comparisons. Because we’re just now beefing up WebXPRT’s AI capabilities, we’ve definitely decided not to include an AI score right now. We would love your feedback on the concept as we plan WebXPRT’s future. If that’s something that you would be interested in, please let us know!

If you have any questions about the WebXPRT 5 details we’ve shared above, please feel free to ask!

Justin

Browser-based AI tests in WebXPRT 4: optical character recognition

In our previous blog post, we discussed the rapidly expanding influence of AI-enhanced technologies in areas like everyday browser activity—and the growing need for objective performance data that can help us understand how well new consumer devices will handle AI tasks. We noted that WebXPRT 4 already includes timed AI tasks in two of its workloads—the “Organize Album using AI” and “Encrypt Notes and OCR Scan”—and we provided some technical details for the Organize Album workload. In today’s post, we’ll focus on the Encrypt Notes workload.

The Encrypt Notes workload includes two separate scenarios that reflect common web-based productivity app tasks. The first scenario syncs a set of encrypted notes, and the second scenario uses AI-based optical character recognition (OCR) to scan a receipt, extract data, and then add that data to an expense report.

Here are the details for each scenario:

  • The encrypt notes scenario downloads a set of notes, encrypts that data, temporarily stores it in the browser’s localStorage object (the localStorageDB.js database layer), and then decrypts and renders it for display. This scenario measures HTML5 Local Storage, JavaScript, AES encryption, and WebAssembly (Wasm) performance. 
  • The OCR scan scenario uses a Wasm-based version of Tesseract.js (tesseract-core.wasm.js v2.20) to scan an expense receipt. Tesseract.js is a JavaScript port of the Tesseract OCR engine—a popular open-source C/C++ library that extracts text from images and PDFs. The scenario then adds the receipt to an expense report. This scenario measures HTML5 Local Storage, JavaScript, and Wasm performance. 

We mention this test under the AI umbrella in part because people sometimes use the term “OCR” to refer to a spectrum of AI and non-AI technologies. In this case, though, the specifics make this workload clearly have an AI component. The Wasm-based Tesseract library that we use in WebXPRT 4 is based on a version of C/C++ (v4.x) that uses Long Short-Term Memory (LSTM). LSTM is a type of recurrent neural network (RNN) that is particularly well-suited for processing and predicting sequential data. As such, it is clearly an AI component of the Encrypt Notes and OCR Scan workload.

To produce a score for each iteration of the workload, WebXPRT calculates the total time that it takes for a system to sync (encrypt, decrypt, and render) the notes, use OCR to scan the receipt, and add the scanned data to an expense report. In a standard test, WebXPRT runs seven iterations of the entire six-workload performance suite before calculating an overall test score. You can find out more about the WebXPRT results calculation process here.

Along with our post on the Organize Album workload, we hope this information provides a deeper understanding of WebXPRT 4’s AI-equipped workloads. As we mentioned last time, if you want to explore the structure of these workloads in more detail, you can check out previous blog posts for information about how to access and use the WebXPRT 4 source code for free. You can also read more about WebXPRT’s overall structure and other workloads in the Exploring WebXPRT 4 white paper.

If you have any questions about WebXPRT 4, please let us know!

Justin

Check out the other XPRTs:

Forgot your password?