A Principled Technologies report: Hands-on testing. Real-world results.
» B

The science behind the report:

Get more power for your
CPU-intensive workloads

Get more power for your CPU-intensive workloads

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Get more power for your CPU-intensive workloads

On April 11, 2018, we finalized the hardware and software configurations we tested. Updates for current and
recently released hardware and software appear often, so unavoidably these configurations may not represent
the latest versions available when this report appears. For older systems, we chose configurations representative
of typical purchases of those systems. We concluded hands-on testing on April 16, 2018.

Section A: Our results

The tables below present our findings in detail.

Application scale-out test

Number of instances Average time to Rate
complete (minutes) (simulations per minute)
Dell EMC™ PowerEdge™ R840 448 3.55 126.2
Dell EMC PowerEdge R820 128 4.66 27.5

Monte Carlo statistical uncertainty test

Number of instances Average time to Statistical error
complete (seconds)

Dell EMC PowerEdge R840 224 101 0.0033

Dell EMC PowerEdge R820 64 105 0.0072

Simulation length test

Number of threads Time to complete Years predicted
(milliseconds)

Dell EMC PowerEdge R840 112 642 "

Dell EMC PowerEdge R820 32 647 5

Get more power for your CPU-intensive workloads June 2018

http://facts.pt/WGrQth
http://www.principledtechnologies.com
http://facts.pt/WGrQth

Section B: System configuration information

The table below presents detailed information on the systems we tested.

Server configuration information Dell EMC PowerEdge R840 Dell EMC PowerEdge R820

BIOS name and version Dell BIOS 0.2.5 Dell BIOS 2.4.1

Operating system name and version/build number EentCl)g Z§0-693 21 1.el7.x86 64 Eent(ljg ?C?O-é% 21 1.el7.x86 64
ernel 3.10. .21.1.el7.x86_ ernel 3.10. .21.1.el7.x86_

Date of last OS updates/patches applied 4/10/2018 4/11/2018

Power management policy Performance Per Watt (DAPC) Performance Per Watt (DAPC)

Processor

Number of processors 4 4

Vendor and model Intel® Xeon® Platinum 8180M Intel Xeon E5-4650

Core count (per processor) 28 8

Core frequency (GHz) 2.50 2.70

Stepping 4 7

Memory module(s)

Total memory in system (GB) 3,072 384

Number of memory modules 48 48

Vendor and model Samsung M386A8K40BM2-CTD Samsung M393B1G70BHO-YKO

Size (GB) 64 8

Type PC4-21300 PC3L-12800R

Speed (MHz) 2,666 1,600

Speed running in the server (MHz) 2,666 1,600

Storage controller

Vendor and model PERC H740P PERC H710

Cache size (MB) 4096 512

Firmware version 50.0.1-0639 21.3.4-0001

Driver version 07.701.17.00-rh1 07.701.17.00-rh1

Local storage

Number of drives 6 6

Drive vendor and model Samsung PM863a SanDisk LTO200MO

Drive size 1.92TB 200 GB

Drive type SATA SSD SAS SSD

NVMe storage

Number of drives 6 N/A

Drive vendor and model Intel DC P4500 N/A

Get more power for your CPU-intensive workloads June 2018 | 2

Server configuration information

Dell EMC PowerEdge R840

Dell EMC PowerEdge R820

Drive size 1.0TB N/A

Drive information PCle NVMe SSD N/A
Network adapter

Vendor and model Broadcom BCM5720 Intel 1350-t

Number and type of ports

4 x Gigabit Ethernet

4 x Gigabit Ethernet

Driver version

tg3 3.137

igh 5.4.0-k

Cooling fans

Vendor and model

Delta Electronics® PFM0612XHE-SMO02

SanAceb60 9GA0612P1J611

Number of cooling fans 6 6

Power supplies

Vendor and model Dell 095HR5 Dell 0CC6WF
Number of power supplies 2 2

Wattage (W) 1600 1100

Get more power for your CPU-intensive workloads

June 2018 | 3

Section C: Detailed testing methodology

This section shows our methods for installing the OS and configuring the servers for our solutions, as well as how we installed and ran the
financial Monte Carlo application.

Installing and configuring the operating system

Boot the server from the CentOS 7.4 (1708) minimal-installation DVD.
From the options menu, select Install CentOS.
Select the language and keyboard type you wish to use for this installation.
Choose default disk partitioning on one volume. Do not partition any remaining volumes.
Choose Minimal Install.
Disable kdump.
Apply Network configuration.
a. Enable the first active network port.

No ok~ wh =

b. Assign the static IP address and hostname from the following table:

System hostname IP Address Routing Prefix
Dell EMC PowerEdge R840 | test-r840 10.215.1.151 /16
Dell EMC PowerEdge R820 | test-r820 10.215.1.150 /16

c. Setthe IP addresses of the gateway and DNS server to 10.220.0.1 and 10.41.0.10, respectively.
8. Set the time zone to Eastern/US, and enable NTP to sync only from 10.40.0.1.
9. Click Install.
10. Set the root password.
11. When the install completes, reboot the system.
12. Log into the system as root.
13. Update the OS software, and install additional packages.
yum -y update
yum -y install gcc gcc-c++ make autoconf automake flex libtool numactl)\
sysstat bash-completion wget lsof sysstat

14. Stop and disable the following unnecessary services:
for i in postfix.service firewalld.service ; do
systemctl disable $i
systemctl stop $i
done
15. Disable SELinux with the following command:
sed -i 's/”SELINUX=enforcing/SELINUX=disabled/' /etc/selinux/config
16. Set the tuning profile with the following command:

tuned-adm profile balanced

Preparing the Financial Monte Carlo application

We obtained a financial Monte Carlo program from the Intel Developer Zone at the following URL (download will begin when you click):
https://software.intel.com/sites/default/files/managed/Oe/30/MonteCarloSample_12_31_14.tar.gz. Intel modified the original code to
illustrate performance with Intel processors and compilers. See the archive’s documentation for details on the code’s history, and see this
document’s Section D for our modified code in full. We placed the source code under content management via git. Here is a summary of
what we changed:

We implemented random number generation for our environment, which did not use Intel MKL math libraries.
We modified the complied options for GCC to reflect the current architectures and compiler capabilities.
We added code to compute an unbiased estimator of the statistical uncertainty in the valuation of the portfolio.

Hwnd -

We added the option to parallelize the code via OpenMP. We choose two “hot spots” to parallelize, and we implemented a simple
parallelization scheme, distinct from the one Intel chose.

Get more power for your CPU-intensive workloads June 2018 | 4

https://software.intel.com/sites/default/files/managed/0e/30/MonteCarloSample_12_31_14.tar.gz

In addition, we created run scripts to control which CPU cores (hyperthreads) ran each application instance. For each system, we used the
4.8.5 version of the GCC compiler from the CentOS distribution:

$ rpm -ga | grep gcc
gcc-4.8.5-16.el17 4.2.x86_ 64

gcc-c++-4.8.5-16.el7 4.2.x86 64
libgcc-4.8.5-16.el17 4.2.x86 64

$ gcec -v
Using built-in specs.
COLLECT_GCC=gcc

COLLECT LTO_WRAPPER=/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/1lto-wrapper

Target: x86_64-redhat-linux

Configured with: ../configure --prefix=/usr --mandir=/usr/share/man

--infodir=/usr/share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla

--enable-bootstrap --enable-shared --enable-threads=posix --enable-checking=release --with-system-
z1lib --enable-_ cxa_atexit --disable-libunwind-exceptions
--enable-gnu-unique-object --enable-linker-build-id --with-linker-hash-style=gnu
--enable-languages=c, c++,0bjc,obj-c++, java, fortran,ada,go,lto --enable-plugin
--enable-initfini-array --disable-libgcj --with-isl=/builddir/build/BUILD/gcc-4.8.5-20150702/0bj~
x86_ 64-redhat-linux/isl-install --with-cloog=/builddir/build/BUILD/gcc-4.8.5-20150702/0bj-x86 64—
redhat-linux/cloog-install --enable-gnu-indirect-function --with-tune=generic --with-arch 32=x86-64

--build=x86 64-redhat-linux
Thread model: posix
gcc version 4.8.5 20150623

(Red Hat 4.8.5-16) (GCC)

The table below shows simulation data and settings for each of our tests.

Dell EMC PowerEdge R840

Dell EMC PowerEdge R820

Application scale-out test

Simulations 1,960,000 1,960,000
Simulation length 40 40
Instances 448 128
Compiler options default default
Monte Carlo statistical uncertainty test

Simulations 1,960,000 1,450,000
Simulation length 40 40
Instances 224 64
Compiler options default default
Simulation length test

Simulations 1,960,000 1,960,000
Simulation length 44 20
Instances (OpenMP threads) 1(112) 1(32)

Compiler options

default + -fopenmp

default + -fopenmp

Get more power for your CPU-intensive workloads

June 2018 | 5

Testing server performance with the financial Monte Carlo application

Because several parameters controlling either the portfolio or the simulation were set in the source code, we re-compiled the application for
each of the three tests. We give the values of the parameters and any GCC compiler options in the following table. Note that our default
compiler options were as follows: —std=c++11 -Ofast -flto -march=native

Testing application scale out

We ran increasing numbers of independent instances of the Monte Carlo program with the following scripts, one for the R820, and the other
for the R840.

R820
for i in 0 1 3 7 15 31 47 63 ; do
echo test $i >> test-$i
for j in $(seq 0 $1i) ; do
numactl -C $3 ./release/MonteCarlo &
done | tee -a test-r820-$i

wait
done
nos. of instances that are multiples of 64
for i in {1..2} ; do for j in $(seq 0 63) ; do
numactl -C $3 ./release/MonteCarlo &
done

done | tee test-r820-b

R840
for i in 0 1 3 7 15 31 63 95 111 127 143 159 175 191 223 ; do
echo test $i >> test-$i
for j in $(seq 0 $1i) ; do
numactl -C $3 ./release/MonteCarlo &
done | tee -a test-r840-$i

wait
done
nos. of instances that are multiples of 224
for i in {1..2} ; do for j in $(seq 0 223) ; do
numactl -C $3 ./release/MonteCarlo &
done

done | tee test-r840b

Testing Monte Carlo statistical uncertainty

We ran independent instances of the Monte Carlo program up to the maximum number of hyperthreads on the server with the following
scripts, one for the R820, and the other for the R840.

R820
for 1 in {0..63} ; do

numactl -C $i ./release/MonteCarlo &
done

R840
for 1 in {0..223} ; do

numactl -C $i ./release/MonteCarlo &
done

Testing simulation length

We ran one instance of the application, parallelized over the maximum of physical cores on the system: namely, 112 for the Dell EMC
PowerEdge R840, and 32 for the Dell EMC PowerEdge R820.

R820
OMP_NUM_THREADS=32 ./release/MonteCarlo
R840
OMP_NUM THREADS=112 ./release/MonteCarlo

Get more power for your CPU-intensive workloads June 2018 | 6

Section D: Our modifications to the financial Monte
Carlo source-code distribution

In this section, we show how we modified the original Monte Carlo source code for our testing purposes.
git diff HEAD

diff --git a/.gitignore b/.gitignore
index 151080d..8cfb621 100644
--- a/.gitignore
+++ b/.gitignore

@@ -1 +1,5 @@

release/
+Build.bat

+MonteCarlo.sln
+MonteCarlo.vcxproj
+MonteCarlo.vcxproj.filters
diff --git a/Makefile b/Makefile
index 7a606e3..ea29%026 100644
@@ -19,6 +19,8 @@

SOURCES := $(wildcard $ (SRCDIR)/*.cpp)
OBJECTS := $(patsubst $(SRCDIR)/%,$ (BUILDDIR)/%,$ (SOURCES:.cpp=.0))

+$ (OBJECTS) : src/monte carlo.h
+
$ (TARGET) : $ (OBJECTS)
@echo " Linking..."
$(CXX) $~ $(LIBFLAGS) -o $(TARGET)
@@ -30,7 +32,9 @@
icpc: $(TARGET)

gcc: CXX := gt++

-gcc: CFLAGS := -02 -mfpmath=sse -flto

+#gcc: CFLAGS := -02 -mfpmath=sse -flto

gcc: CFLAGS := -std=c++11 -Ofast -flto -march=native #-fopenmp
+gcc: LIBFLAGS := $(CFLAGS) -1lm

gcc: $(TARGET)
diff --git a/src/main.cpp b/src/main.cpp
index ¢387e20..469183b 100644
@R -41,12 +41,8 @@
volatility[i] = c volatility wval;

- // create normal distribution either using MKL, or setting all values to
0.3
-#ifdef IS USING MKL
+ // create normal distribution
float point precision *normal distribution rand=initialize normal dist(c_
normal dist mean, c normal dist std dev);
-#else
- float point precision *normal distribution rand=initialize normal
dist (0,0);
-#endif

#ifndef _ INTEL COMPILER

#ifdef PERF_NUM

@@ -56,9 +52,10 @@
CUtilTimer timer;

printf ("Starting serial, scalar Monte Carlo...\n");
timer.start();
- float point precision payoff = calculate monte carlo paths scalar(initial
LIBOR rate, volatility, normal distribution rand, discounted swaption payoffs);
+ std::tuple<float point precision, float point precision> payoff;
+ payoff = calculate monte carlo paths scalar(initial LIBOR rate,

volatility, normal distribution rand, discounted swaption payoffs);

Get more power for your CPU-intensive workloads June 2018 | 7

timer.stop();
- printf ("Calculation finished. Average discounted payoff is %.6f. Time taken
is %.0fms\n", payoff, timer.get time()*1000.0);

+ printf ("Calculation finished. Average discounted payoff is %.6f (%.6f) for
%d runs. Time taken is %.0fms\n", std::get<0>(payoff), sqrt(std::get<l>(payoff)/c
num simulations), c num simulations, timer.get time()*1000.0);

#ifdef PERF NUM
avg_time += time;
}

@@ -188,7 +185,14 @@

// Returns an array of random numbers pulled from a normal distribution

// If MKL is enabled, a Gaussian distribution is used
-// if MKL is not enabled, 0.3 is used for all "random" values (pass 0 for mean
and std_dev)
+// if MKL is not enabled, a Gaussian distribution from std library is used

+#ifndef IS USING MKL
+#include <random>
+#endif
4
+#include <omp.h>
4

float point precision *initialize normal dist (float point precision mean, float
point precision std dev)

{

#if MSC VER && ! INTEL COMPILER
@@ -208,8 +212,14 @@

#endif

vslDeleteStream(&vslstream);

#else

std::random _device rd;
std::mt19937 gen{rd()};
std::normal distribution<float point precision> d{mean, std dev};

+ o+ o+ o+ o+

+#pragma omp parallel for
for(int 1=0; i<c_num simulations*c_ time steps; ++i) {
- zloc[i] = 0.3;
+ zloc[i] = d(gen);
}
#endif // IS USING MKL
diff --git a/src/monte_carlo.h b/src/monte_carlo.h
index 067£763..8704c4b 100644
@@ -22,6 +22,7 Q@
#include <cstdio>
#include <cmath>
#include <cassert>
+#include <tuple>

#ifdef INTEL COMPILER
#include <cilk/cilk.h>
@@ -36,9 +37,9 Qe

//GCC uses _ attribute (noinline) at end of function declaration
//This #defines Microsoft's/Intel's _ declspec(noinline) to nothing

-#ifdef GNUC_

—#define declspec (noinline)

-#endif

+//#ifdef _ GNUC__

+//#define declspec (noinline)

+//#endif

//Determines whether float is single precision (float) or double precision (double)
//This should be defined in the preprocessor as either DOUBLE or SINGLE
@@ -63,7 +64,9 @@

const float c_zero = 0.0f;

Get more power for your CPU-intensive workloads June 2018 | 8

const float c_one half = 0.5f;
const float c_hundred = 100.0f;
+#ifdef IS USING MKL
#define exp expf
+#endif

#endif // SINGLE or DOUBLE floating point precision
@@ -71,7 +74,7 @@

//Number of simulations that Monte Carlo runs
//Must be a multiple of c_simd vector length
-const int c_num simulations = 96000;
+const int c num simulations = 196000;
//The interval at which the future LIBOR rate is recalculated
//Otherwise known as the LIBOR interval

const float point precision c reset interval = 0.25;

@@ -85,12 +88,15 @@

const float point precision c_strike prices[] = {.045,.05,.055,.045,.05,.055,.045
, .05,

.055,.045,.05,.055,.045,.05,.05
5 };

-//number of different possible forward rates calculated for the portfolio
-const int c_num forward rates=80;
+
//Number of time steps each possible forward rate goes through
-//Each step uses the seed of a random number from a normal distrubition
+//Each step uses the seed of a random number from a normal distribution
const int c_time steps = 40;

+//number of different possible forward rates calculated for the portfolio
+//assumes the list of maturities is in ascending order
+const int c num forward rates= c time steps + c_lengths[c num options-1];
+

//Bmount price varies over time

//Typically determined as function of time to maturity

//In this example, however, it remains constant
@@ -142,7 +148,7 @@

//Calls calculate_path for swaption_kernel array using a for loop
//returns the average of all simulations

__declspec(noinline)
—-float_point precision calculate monte carlo paths scalar(
+std::tuple<float point precision,float point precision> calculate monte carlo_
paths_scalar (

float point precision * restrict initial LIBOR rate,
float point precision * restrict volatility,
float _point precision * restrict normal distribution rand,

diff --git a/src/simulations.cpp b/src/simulations.cpp
index 79b7£fd8..da20fb4 100644
--- a/src/simulations.cpp
+++ b/src/simulations.cpp
@@ -20,28 +20,41 @@

// one calls scalar code using cilk for, and one calls array notation using cilk
for.

#include "monte carlo.h"
+#include <omp.h>

// Description:

// Calls scalar kernel using linear for loop

// [in]: initial LIBOR rate, volatility, normal distribution rand, discounted
swaption payoffs

// [out]: average discounted payoff

~_declspec(noinline)
-float point precision calculate monte carlo paths scalar(
+std::tuple<float_point precision, float point precision> calculate monte carlo

Get more power for your CPU-intensive workloads June 2018 | 9

paths_scalar (
float point precision * restrict initial LIBOR rate,
float point precision * restrict volatility,
- float _point precision * restrict normal distribution rand,
+ float _point precision * restrict normal distribution rand,
float point precision * restrict discounted swaption payoffs
)
{

+
+#pragma omp parallel for
for (int path=0; path<c num simulations; ++path) {
calculate path for swaption kernel scalar(initial LIBOR rate, volatility,
normal distribution rand+ (path*c time steps), discounted
swaption payoffs+path);
}

float point precision total payoff = c_zero;
for (int 1=0; i<c_num simulations; ++i) {
total payoff += discounted swaption payoffs[i];

}

return total payoff/c_num simulations;

float point precision total payoff = c_zero;
float point precision total payoff2 = c_zero;

for (int 1=0; i<c_num simulations; ++i) {
total payoff += discounted swaption payoffs[i];
}

total_payoff /= c _num simulations;

for (int 1=0; i<c_num simulations; ++i) {
total payoff2 += (discounted swaption payoffs[i] - total
ayoff) * (discounted swaption payoffs[i] - total payoff);
}

total _payoff2 /= c _num simulations;

+ o+ o+ T+ o+ o+ +

return std::make tuple(total payoff, total payoff2);

#ifdef INTEL COMPILER
@e -62,9 +75,9 @@
calculate path for swaption kernel array(initial LIBOR rate,
volatility,
normal distribution rand+ (path*c time steps), discounted
swaption payoffs+path);
}

for (int 1=0; i<c_num simulations; ++i) {
- total payoff += discounted swaption payoffs[i];
- }
for (int 1=0; i<c_num simulations; ++i) {
total payoff += discounted swaption payoffs[i];

+ + +

}

return total payoff/c_num simulations;

diff --git a/src/kernel.cpp b/src/kernel.cpp
index 79b7fd8..da20fb4 100644
--- a/src/kernel.cpp
+++ b/src/kernel.cpp
@@ -39,7 +39,11 @@
float point precision *discounted swaption payoffs
)
{
+#if GNUC

+ float point precision forward LIBOR rates[c num forward rates] _ attribute
((aligned (64))) ;
+#else

__declspec(align(64)) float point precision forward LIBOR rates[c_num forward

Get more power for your CPU-intensive workloads June 2018 | 10

rates];
+#endif
// initial LIBOR rate holds constant values, but could be filled with real,
varied values
for (int 1=0;i<c num forward rates;++i) {
forward LIBOR rates([i] = initial LIBOR rate[i];

Read the report at http://facts.pt/WGrQth »

This project was commissioned by Dell EMC.

‘ Principled

Technologies®

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:

Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of the
possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with Principled
Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

Get more power for your CPU-intensive workloads June 2018 | 11

http://www.principledtechnologies.com/index
http://facts.pt/WGrQth

