
CloudXPRT Web Microservices Workload
• Introduction

• Configure the benchmark

• Run the benchmark on premises

• Benchmark results

• Configure and run on AWS

• Configure and run on Azure

• Configure and run on GCP

• Running in Demo mode with UI

• Build the benchmark from source

Introduction

In the web-tier microservices workload, a simulated user logs in to a web application that
does three things: provides a selection of stock options, performs Monte-Carlo simulations
with those stocks, and presents the user with options that may be of interest. The workload
reports performance in transactions per second, which testers can use to directly compare
IaaS stacks and to evaluate whether any given stack is capable of meeting service-level
agreement (SLA) thresholds.

CloudXPRT installation

Configure the benchmark

The installation scripts within the installation directory will install and create a Kubernetes
cluster using Kubespray. They will help you:

• configure your environment to run CloudXPRT,

• get the IP addresses for all machines in your cluster,

• configure passwordless SSH,

• install Ansible/Kubespray requirements,

• create the cluster, and

• remove the cluster once you are done running CloudXPRT.

Terminology

• Node - A single machine or virtual machine

• Control Plane Node - The node running the installation, this will become the
Kubernetes Control Plane node.

• Worker Node - Each machine that will join the Kubernetes cluster.

Supported OS

• On-prem: Ubuntu 20.04.2 or later

• Cloud: Ubuntu 18.04 or later

Minimum requirements

We highly recommend running this benchmark on high end servers. While running, the
benchmark will scale to utilize all the cores available. However, for functional testing, your
physical node or VM must have at least:

• 16 logical or virtual CPUs

• 8GB Ram

• 10GB Disk Space

Installation steps

Configure the environment

1. In each machine in your cluster:

– Set the sudouser password if it is not set (Note: must be the same on each
machine)

 sudo passwd sudouser

– Add the following line at the end of /etc/sudoers file

 sudouser ALL=(ALL) NOPASSWD: ALL

– Ensure openssh-server is installed

 sudo apt-get install openssh-server -y

– Allow password authentication

– Edit /etc/ssh/sshd_config

– Uncomment and modify the PasswordAuthentication line to allow SSH login
with password

 PasswordAuthentication yes

– Restart sshd

 sudo service sshd restart

Control Plane node

Go to the installation directory.

 cd CloudXPRT_vX.XX_web-microservices/installation

1. Edit cluster_config.json

 For each machine in the cluster, add its IPV4 address and optionally desired hostname.
One machine per {..} section within the "nodes" list, starting with the Control Plane
node.

 Note: Although optional, each hostname must be unique and may only contain
lowercase alphanumeric characters. If hostnames are not provided, Kubespray will
rename each host as node1, node2, ..., nodeN. This means that the Control Plane node's
hostname will be changed to 'node1'.

 If your machines are behind a proxy, make sure to set "set_proxy" to "yes", and
configure the settings for "http_proxy" and "https_proxy". Those proxy settings will be
applied on all the nodes to ensure that they can communicate through the Kubernetes
networking plugin. Furthermore, you must reboot the nodes in order for them to take
effect since /etc/environment is modified. You have the option "reboot" to allow the
prepare-cluster.sh script to reboot all the nodes automatically. By default, the reboot
option in cluster_config.json is set to 'yes'. If you set it to 'no', please manually reboot
your machines after running prepare-cluster.sh, otherwise the cluster creation in the
step 3 will fail.

 Example configuration for a three node cluster:

 "nodes": [
 {
 "ip_address": "192.168.0.11",
 "hostname": "controlplane"
 },
 {
 "ip_address": "192.168.0.12",
 "hostname": "worker1"
 },
 {
 "ip_address": "192.168.0.13",
 "hostname": "worker2"
 }
],

2. In the Control Plane node, run "prepare-cluster.sh" script as sudo user to perform
preparation steps.

 sudo ./prepare-cluster.sh

3. In the Control Plane node, run the "create-cluster.sh" script as sudo user

 sudo ./create-cluster.sh

 Note:

– This process may take anywhere from 6 up to 20 minutes.

– If you get an error with respect to docker-ce repository 'RETRYING: ensure
docker-ce repository public key is installed ...', double check that the proxies

are configured correctly! You may repeat the "prepare-cluster.sh" script to set
this again, or you may manually edit them in each node of your cluster.

– You should also double check that the date and time are the same on all of the
nodes.

– For more information on Kubespray and possible errors, please check out their
GitHub repo: https://github.com/kubernetes-sigs/kubespray

Reset Docker and Kubernetes cluster

To remove cluster and docker installation on every node, run the "remove-cluster.sh"
script in the Control Plane node after you finish all the tests on this machine.

 sudo ./remove-cluster.sh

Answer 'y' or 'yes' to the prompt.

Note: This will not remove the proxy settings. If you want to run
CloudXPRT again, you can run the "create-cluster.sh" script to re-create the
Kubernetes cluster.

Run the benchmark on-premises

Running CloudXPRT Web Microservices

 cd CloudXPRT_vX.XX_web-microservices/cnbrun

Configure benchmark parameters

Edit config.json file to set the parameters for CloudXPRT.

• runoption: Run only a specific microservice or all of them individually (not in
multitenancy)

• iterations: Number of iterations to run for each microservice

• hpamode: If true, use Kubernetes HPA to scale pods as load increases. Otherwise,
create max pods from the beginning

• postprocess: If true, run the postprocess binary at the end of the run

• ppoutputfile: Sef if want post process results to be saved in a file

• autoloader.initialclients: The initial number of clients the load generator will create

• autoloader.clientstep: The number of clients to increase for each load generator
iteration

• autoloader.lastclient: Stops the load generator when reaching this number of clients.
If set to -1, it will continue to run until cluster is saturated (i.e. CPU ~100%)

• autoloader.SLA: Service Level Agreement for 95 percentile latency constraint. If set to
-1, there is no latency constraint

• autoloader.timeinterval: The amount of time to spend within each load generator
iteration with the specified amount of clients

• workload.version: Docker image version to use

• workload.cpurequests: Amount of CPU cores requested to assign to each pod
(integer only)

Note: cnbrun, gobench, autoloader, and all shell scripts need to have executable
permissions

Start the Benchmark Run

Running the load generator within the System Under Test (SUT)

Once parameters in config.json are configured, run the cnbrun executable.

 ./cnbrun

If benchmark run is interrupted in the middle, to clean up the resources generated

 ./cleanups.sh

To collect system information for the cluster, run the following script, on the Control Plane
node only.

 ./system_info.sh

Running the load generator outside of the SUT

Requirement: The machine running the load generator must be on the same network as
the Kubernetes cluster.

Copy the following directories from the Control Plane node of the cluster to the machine
you want to run the load generator on:

1. cnbrun directory

2. $HOME/.kube directory

On the load generator machine:

1. Move the .kube directory to the user's home directory $HOME/

2. Install kubectl

 sudo apt-get install kubectl

3. Rename mc.remote.sh to mc.sh

 mv mc.remote.sh mc.sh

4. Ensure that the autoloader, cnbrun, cnbweb, gobench, and mc.sh within the cnbrun
directory have executable permissions.

 chmod +x autoloader cnbrun cnbweb gobench mc.sh

5. Once parameters in config.json are configured, run the cnbrun executable.

 ./cnbrun

Benchmark Results

After a run, results will be written to the same node that ran the load generator. If you used
a multi-node cluster, the other nodes within the cluster will not have any result files. The
results will be written to the 'cnbrun/output' directory. These files do not get deleted or
overwritten. They will accumulate in the output directory after each run.

For each run, you will have 4 files:

1. A log file with the results in a formatted table

2. A csv file with the results

3. A log file with all the stdout output during the run

4. A copy of the config file used for that run

Metrics

The results can be summarized using the following metrics:

1. Max successful requests per minute under a specified SLA

2. Total Max successful requests per minute (regardless of SLA)

Currently deriving the metric from the results is a manual process from the log file with the
formatted table.

By default, the max Service Level Agreement (SLA) for 95 percentile latency is 3 seconds
(specified in config.json's 'autoloader.SLA' parameter). The load generator will stop when
either the system under test can no longer meet the specified SLA or when the SUT cannot
beat the current maximum number of successful request within 5 retries.

Below are the condensed results from a run. You can choose different SLA's of interest from
the logfile. For example, choosing SLA's as 1000ms, 2000ms, and 3000ms, we can compare
the request rate that the SUT was able to consistently respond to within that time.

From the results, you can see that the system was able to handle: - 604 requests per minute
under 1000ms, - 889 requests per minute under 2000ms, and - 900 requests per minute
under 3000ms

The max throughput within this run is 900 successful requests per minute.

CONCURRENC
Y

SUCC_REQ
S

..

.
SUCC_REQS_RATE(REQ/
S)

..

.
MC_RESP_TIME(95%ile)(M
S)

1 50 ..
.

1 ..
.

607

2 98 ..
.

3 ..
.

667

...
.

... ..
.

...

17 587 .. 19 .. 942

. .

18 604 ..
.

20 ..
.

987

19 624 ..
.

20 ..
.

1007

20 639 ..
.

21 ..
.

1093

...
.

... ..
.

...

49 884 ..
.

29 ..
.

1965

50 889 ..
.

29 ..
.

1994

51 889 ..
.

29 ..
.

2041

52 890 ..
.

29 ..
.

2189

...
.

... ..
.

...

59 897 ..
.

29 ..
.

2819

60 907 ..
.

30 ..
.

2706

61 900 ..
.

30 ..
.

2800

62 888 ..
.

29 ..
.

3032

Configure and run on AWS

Install Kubernetes cluster with KOPS on AWS and run CloudXPRT

References:
• https://medium.com/containermind/how-to-create-a-kubernetes-cluster-on-aws-in-

few-minutes-89dda10354f4

• https://github.com/kubernetes/kops/blob/master/docs/getting_started/aws.md

• https://medium.com/@mcyasar/amazon-aws-kubernetes-kops-installation-
7a205fe2d118

• https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

• https://docs.aws.amazon.com/cli/latest/userguide/install-linux.html

• https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

• https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

• https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-
permissions.html

Preparation:

On local Ubuntu linux machine, create a new user then switch to this user

 sudo adduser awsuser
 sudo adduser awsuser sudo

If you are using GUI on the local Ubuntu machine, logout and log back in as azureuser.
Otherwise, you can directly change over to the new user using the following command.

 su - awsuser

Download Terraform binary and put it under /usr/local/bin directory

• https://www.terraform.io/downloads.html

Create AWS IAM user and change permissions for this user, refer to AWS official
documentations:

• https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

• https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-
permissions.html

The AWS IAM user needs to be granted with the following permissions:

• AmazonEC2FullAccess

• AmazonRoute53FullAccess

• AmazonS3FullAccess

• IAMFullAccess

• AmazonVPCFullAccess

Install AWS CLI, refer to the AWS official documentations:

 https://docs.aws.amazon.com/cli/latest/userguide/install-linux.html

Create access keys for IAM user, refer to the AWS official documentations

 https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-
keys.html

Configure AWS CLI using access keys created

 aws configure
 AWS Access Key ID [None]: AKIXXXXXXXXXXXXX
 AWS Secret Access Key [None]: sIrkzNOXxXXXXXXXXXXXxxxXXXX
 Default region name [None]: us-west-2
 Default output format [None]: json

Verify key and secret are stored into "~/.aws/credentials" file

 [default]
 aws_access_key_id = AKIXXXXXXXXXXXXX
 aws_secret_access_key = sIrkzNOXxXXXXXXXXXXXxxxXXXX

Create SSH key pairs

 ssh-keygen

Create Virtual Machines (VMs)

 tar -xzf CloudXPRT_vXXXX_web-microservices.tar.gz
 cd CloudXPRT_vXXXX_web-microservices/terraform/aws
 modify variables.tf file
 terraform init
 terraform apply
 wait some time for it to finish (around 1-2 minutes)

Run CloudXPRT and save results

Access cluster

 Get the public addresses of VMs created
 terraform show

Edit config file under .ssh directory to bypass company proxy issues, an example of config file:

 User ubuntu
 ProxyCommand nc -X 5 -x proxy.XXX.com:1080 %h %p

Note: Only needed if ssh/scp is blocked by company proxy, get the proxy settings from
your companies' IT.

Copy ssh key file to the VM to be set up as Control Plane node

 scp .ssh/id_rsa ubuntu@public_IP_of_VM:~/.ssh

Copy CloudXPRT release package to the VM to be set up as Control Plane node

 scp CloudXPRT_vXXXX_web-microservices.tar.gz ubuntu@public_IP_of_VM:~/

Note: Make sure you use your own connection string!

SSH into Control Plane node

 ssh ubuntu@public_IP_of_VM

Install Kubernetes cluster

 tar -xzf CloudXPRT_vXXXX_web-microservices.tar.gz
 cd CloudXPRT_vXXXX_web-microservices/installation
 ifconfig

 modify cluster_config.json file with IP address shown with ifconfig
 sudo ./prepare-cluster-CSP.sh
 sudo ./create-cluster.sh

Run CloudXPRT

 cd CloudXPRT_vXXXX_web-microservices/cnbrun

Modify config.json file according to README in cnbrun directory

Run the benchmark:

 ./cnbrun

Note: Results will be written in the 'output' directory.

Save results locally

In your local machine, copy the results

 scp ubuntu@public_IP_of_VM:~/CloudXPRT_vXXXX_web-
microservices/cnbrun/output/* .

Clean up Cluster

After you are done running CloudXPRT and have saved the results:

 terraform destroy

Configure and run on Azure

Preparation:

On local Ubuntu linux machine, create a new user then switch to this user

 sudo adduser azureuser
 sudo adduser azureuser sudo

If you are using GUI on the local Ubuntu machine, logout and log back in as azureuser.
Otherwise, you can directly change over to the new user using the following command.

 su - azureuser

Download Terraform binary and put it under /usr/local/bin directory

• https://www.terraform.io/downloads.html

Install Azure CLI

 curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

Note: If this step fails, refer to Microsoft Azure official documentation to install Azure CLI
in an alternative way:

 https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-
cli-latest

Authenticate with your Azure account

 az login
 az account list-locations

Create SSH key pairs

 ssh-keygen

Create Virtual Machines (VMs)

 tar -xzf CloudXPRT_vXXXX_web-microservices.tar.gz
 cd CloudXPRT_vXXXX_web-microservices/terraform/azure
 modify variables.tf file
 terraform init
 terraform apply
 wait some time for it to finish (around 1-2 minutes)

Run CloudXPRT and save results

Access cluster

 Get the public addresses of VMs created
 terraform show

Edit config file under .ssh directory to bypass company proxy issues, an example of config file:

 User azureuser
 ProxyCommand nc -X 5 -x proxy.XXX.com:1080 %h %p

Note: Only needed if ssh/scp is blocked by company proxy, get the proxy settings from
your companies' IT.

Copy ssh key file to the VM to be set up as Control Plane node

 scp .ssh/id_rsa azureuser@public_IP_of_VM:~/.ssh

Copy CloudXPRT release package to the VM to be set up as Control Plane node

 scp CloudXPRT_vXXXX_web-microservices.tar.gz azureuser@public_IP_of_VM:~/

Note: Make sure you use your own connection string!

SSH into Control Plane node

 ssh azureuser@public_IP_of_VM

Install Kubernetes cluster

 tar -xzf CloudXPRT_vXXXX_web-microservices.tar.gz
 cd CloudXPRT_vXXXX_web-microservices/installation
 ifconfig
 modify cluster_config.json file with IP address shown with ifconfig
 sudo ./prepare-cluster-CSP.sh
 sudo ./create-cluster.sh

Run CloudXPRT

 cd CloudXPRT_vXXXX_web-microservices/cnbrun

Modify config.json file according to README in cnbrun directory

Run the benchmark:

 ./cnbrun

Note: Results will be written in the 'output' directory.

Save results locally

In your local machine, copy the results

 scp azureuser@public_IP_of_VM:~/CloudXPRT_vXXXX_web-
microservices/cnbrun/output/* .

Clean up Cluster

After you are done running CloudXPRT and have saved the results:

 terraform destroy

Configure and run on GCP

Install Kubernetes cluster with KOPS on Google Cloud and run CloudXPRT

References:
• https://github.com/kubernetes/kops/blob/master/docs/getting_started/gce.md

• https://cloud.google.com/sdk/install

• https://cloud.google.com/storage/docs/gsutil

• https://www.cloudtechnologyexperts.com/kubernetes-google-cloud-kops/

Preparation:

On local Ubuntu linux machine, create a new user then switch to this user

 sudo adduser gcpuser
 sudo adduser gcpuser sudo

If you are using GUI on the local Ubuntu machine, logout and log back in as gcpuser.
Otherwise, you can directly change over to the new user using the following command.

 su - gcpuser

Download Terraform binary and put it under /usr/local/bin directory

• https://www.terraform.io/downloads.html

Install Google Cloud SDK and other tools by using the Google SDK installer (recommended)

• Reference: https://cloud.google.com/sdk/docs/downloads-interactive

 curl https://sdk.cloud.google.com | bash
 exec -l $SHELL

Install Google Cloud SDK in alternative ways, refer to Google official documentations:

 https://cloud.google.com/sdk/install

Log on your Google cloud account, make sure your account works and configure default
credentials. Need create a project to work on or use an existing one.

 gcloud init
 gcloud compute zones list
 gcloud auth application-default login

Create service account and download the service account key to your machines where KOPS
run, refer to Google official documentations:

 https://cloud.google.com/docs/authentication/production

Create SSH key pairs

 ssh-keygen

Create Virtual Machines (VMs)

 tar -xzf CloudXPRT_vXXXX_web-microservices.tar.gz
 cp your-service-account-key.json CloudXPRT_vXXXX_web-
microservices/terraform/gcp
 cd CloudXPRT_vXXXX_web-microservices/terraform/gcp
 modify variables.tf file
 terraform init
 terraform apply
 wait some time for it to finish (around 1-2 minutes)

Run CloudXPRT and save results

Access cluster

 Get the public addresses of VMs created
 terraform show

Edit config file under .ssh directory to bypass company proxy issues, an example of config file:

 User gcpuser
 ProxyCommand nc -X 5 -x proxy.XXX.com:1080 %h %p

Note: Only needed if ssh/scp is blocked by company proxy, get the proxy settings from
your companies' IT.

Copy ssh key file to the VM to be set up as Control Plane node

 scp .ssh/id_rsa gcpuser@public_IP_of_VM:~/.ssh

Copy CloudXPRT release package to the VM to be set up as Control Plane node

 scp CloudXPRT_vXXXX_web-microservices.tar.gz gcpuser@public_IP_of_VM:~/

Note: Make sure you use your own connection string!

SSH into Control Plane node

 ssh gcpuser@public_IP_of_VM

Install Kubernetes cluster

 tar -xzf CloudXPRT_vXXXX_web-microservices.tar.gz
 cd CloudXPRT_vXXXX_web-microservices/installation
 ifconfig
 modify cluster_config.json file with IP address shown with ifconfig
 sudo ./prepare-cluster-CSP.sh
 sudo ./create-cluster.sh

Run CloudXPRT

 cd CloudXPRT_vXXXX_web-microservices/cnbrun

Modify config.json file according to README in cnbrun directory

Run the benchmark:

 ./cnbrun

Note: Results will be written in the 'output' directory.

Save results locally

In your local machine, copy the results

 scp gcpuser@public_IP_of_VM:~/CloudXPRT_vXXXX_web-
microservices/cnbrun/output/* .

Clean up Cluster

After you are done running CloudXPRT and have saved the results:

 terraform destroy

Demo with UI

Instructions for running the benchmark in demo mode with UI

These scripts make it easy to bring up all of the services that are used during a normal
CloudXPRT run. The main difference is that only one replica of each service is deployed and
the services remain deployed until you want to remove them. It gives users time to interact
with the web pages that the web server is serving.

Deploy all services

 ./services.sh up

Viewing Web Server Pages

Once all of the services are up, the script will print out possible address you can visit to
interact with the front end. Example output from the script:

 You may access the web server UI by visiting one of the following
addresses in your web browser:
 http://10.233.47.78:8070 on any machine within the cluster, or
 http://192.168.0.11:30800 externally on any machine within the same
network

The second address printed is the ip address of the Control Plane node. If you have a multi-
node cluster, you can access the web service by visiting the ip address of either node along
with the same port number listed from the script.

To get the web-service ClusterIP address and ports exposed:

 kubectl get service web-service
 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
 web-service NodePort 10.233.47.78 <none> 8070:30800/TCP
14m

The ClusterIP address and port 8070 is only accessible from any nodes within Kubernetes
cluster.

Externally, use the actual node's ip address along with the port listed within the 30000-
32767 range.

Remove all services

 ./services.sh down

Build the benchmark from source

Instructions for building the benchmark from source on Ubuntu 18.04

Download and install GO

 wget https://dl.google.com/go/go<version>.linux-amd64.tar.gz
 sudo tar -C /usr/local/ -xzf go<version>.linux-amd64.tar.gz
 echo 'export PATH=$PATH:/usr/local/go/bin' >> $HOME/.profile
 source $HOME/.profile

Compile GO binaries and create release packages

 cd CloudXPRT-src/web-microservices
 sudo apt install pkg-config libssl-dev -y

• Create the release archive in directory "build" as file CloudXPRT_vX.XX_web-
microservices.tar.gz

 make build

