
The solutions we tested
We deployed two on-premises cloud platforms with Kubernetes integrations: VMware® vSphere® 7 Update 2
(7U2) with VMware Tanzu™ and bare-metal Red Hat® OpenShift® 4.7. Our goal was to quantify the maximum
number of pods that each solution supported. Due to limitations of the kubelet, Kubernetes API, and other
platform components, each Kubernetes node can support only a maximum number of pods regardless of the
underlying physical resources. In a bare-metal environment, each node runs on a dedicated physical server.
Virtualized environments provide a workaround to those limitations, however, by supporting more nodes
and pods on the same physical hardware. Virtual environments can thus offer a pod density advantage for
Kubernetes compared to bare-metal solutions.

We configured the worker hosts on each cloud platform on five HPE ProLiant DL380 Gen10 servers with identical
processors, memory, and storage configurations. We kept the number of hosts performing workloads in each
deployment consistent across both platforms to represent a company deploying either cloud platform onto a
defined number of servers. Each solution had different requirements for management, storage, and worker hosts.

For the vSphere 7U2 with Tanzu deployment, we configured all five hosts as a complete vSphere cluster with
Tanzu Kubernetes capabilities. For the bare-metal Red Hat OpenShift deployment, we configured three hosts
(i.e., servers) as management hosts and five hosts as worker hosts, for a total of eight hosts.

Our test approach
Given the identical hardware in our two five-host clusters, one might expect that they would support similar
numbers of pods. To explore this, we conducted pod density testing using a minimal web-service workload that
supported a basic website. Each pod in the workload ran a replica of the website, and a standard Kubernetes
load balancer split the traffic evenly across all pods. We started with a small number of pods and gradually
increased the number until we reached the point where increasing pod count further would cause performance
deterioration or cluster instability.

What we found
The vSphere with Tanzu environment supported 13,700 pods, 6.3 times the 2,150 pods that the bare-metal Red
Hat OpenShift 4.7 cluster supported.

Pod density comparison:
VMware vSphere with Tanzu
vs. a bare-metal approach using
Red Hat OpenShift 4.7

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised)

A Principled Technologies report: Hands-on testing. Real-world results.

http://www.principledtechnologies.com

Red Hat OpenShift solution
According to Red Hat OpenShift documentation, the platform supports up to 250 pods per node, or physical
host in our case. However, Red Hat provides additional documentation on scaling to 500 pods per node (or
physical host in our case). We set out to test this higher limit and see whether our five-host bare-metal cluster
could support 2,500 pods. To do so, we modified default parameters as follows to allow the cluster to achieve
the theoretical max pod count:

• kubeletConfig

 y maxPods: 520 #default is 250

 y kubeAPIBurst: 200 #default is 100

 y kubeAPIQPS: 100 #default is 50

We also modified the install.yaml configuration by changing the hostPrefix networking setting to 22 (from a
default of 23).

For the Red Hat OpenShift solution, we stopped our pod count increase when we began observing instability
in the physical hosts operating as worker nodes. We found that when we exceeded 2,150 of our workload pods
(430 workload pods per host), individual worker node hosts would unpredictably go offline, and pod counts
would drop accordingly. In Figure 1, the status for the second-to-last node is “Not Ready,” illustrating the
behavior we observed.

Figure 1: Red Hat OpenShift solution node dashboard. Source: Principled Technologies.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 2

Figure 2 shows 2,150 stable pods.

Figure 2: Red Hat OpenShift environment showing 2,150 stable pods. Source: Principled Technologies.

We did not observe any specific software or hardware bottleneck or error message to identify and resolve the
source of the host instability we experienced. All our further attempts to deploy a pod count beyond 2,150
ultimately resulted in unpredictable host instability for one or more hosts operating as worker hosts. We found
that the most reliable way to bring the offline worker hosts back was to delete all pods, reboot the offline host,
and redeploy the pods at a maximum of 2,150 for stable cluster performance.

As Figure 3 shows, the cluster utilization metrics did not reveal bottlenecks in any areas. (Note: The dramatic dip
in the Pod count chart reflects a previous test that failed.)

Figure 3: Red Hat OpenShift environment utilization screen. Source: Principled Technologies.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 3

VMware vSphere with Tanzu solution
In contrast to the Red Hat OpenShift solution, we observed no node instability with VMware vSphere with Tanzu.
On this platform, we were able to steadily increase the worker node VMs and the number of pods, which allowed
us to scale the number of pods to 13,700, the point at which we reached 95 percent memory utilization. Figure
4 shows the 13,700 stable pods, and Figure 5 shows the memory utilization. We determined this to be the
maximum because continuing to increase pod counts would have caused performance deterioration across the
cluster due to memory paging because of overcommitted memory resources.

Figure 4: VMware vSphere with a Tanzu cluster showing 13,700 stable pods. Source: Principled Technologies.

Figure 5: VMware vSphere with Tanzu cluster memory utilization screen. Source: Principled Technologies.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 4

Figure 6 illustrates the difference we observed. The 13,700 pods that the vSphere with Tanzu cluster supported
was 6.3 times the 2,150 pods the bare-metal Red Hat OpenShift cluster could handle in our testing. The vSphere
with Tanzu cluster’s maximum pod count of 13,700 is 5.4 times the theoretical maximum 2,500 pods that Red
Hat OpenShift should support per Red Hat documentation. We ran more pods in our virtualized vSphere
environment because it supported more worker nodes than the Red Hat bare-metal solution.

Figure 6: The number of pods each cluster supported in our testing. Source: Principled Technologies.

Clearly, in situations where it is necessary to run a large number of simple web app workloads, the vSphere with
Tanzu cluster made much more efficient use of CPU and memory resources across the worker nodes, giving it a
substantial advantage over the bare-metal Red Hat OpenShift cluster. In addition, the vSphere with Tanzu cluster
did not require additional management hosts, while the Red Hat OpenShift cluster required three additional
control plane hosts.

The greater efficiency of the vSphere with Tanzu environment on this workload could translate to significant
CapEx and OpEx savings because you would theoretically need an environment five to six times the size to run
the same number of pods in a bare-metal Red Hat environment. The greater pod density that the vSphere with
Tanzu environment supports could allow platform administration teams to work with their infrastructure peers to
reduce hardware spend.

Number of pods each five-host cluster supported
(higher is better)

Theoretical total 2,500

13,700

2,150

Bare-metal Red Hat OpenShift 4.7 clusterVMware vSphere with Tanzu cluster

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 5

Appendix A – System configuration information
Table 1: System configuration information for the test clusters. Note that each cluster comprised five servers.

System configuration information vSphere with Tanzu cluster systems Bare-metal Red Hat OpenShift cluster systems

Server HPE ProLiant DL380 Gen10 HPE ProLiant DL380 Gen10

BIOS name and version U30 v2.34 U30 v2.34

Operating system name and
version/build number VMware ESXi™ 7.0.2 Red Hat Enterprise Linux® CoreOS 4.18

47.83.202106252242-0

Date of last OS updates/
patches applied 4/1/2021 4/1/2021

Power management policy Dynamic Power Savings Mode Dynamic Power Savings Mode

Processor

Number of processors 2 2

Vendor and model Intel® Xeon® Gold 5120 CPU Intel Xeon Gold 5120 CPU

Core count (per processor) 14 14

Core frequency (GHz) 2.2 2.2

Stepping - M0

Memory module(s)

Total memory in system (GB) 256 256

Number of memory modules 4 4

Vendor and model Hynix® 809085-091 Hynix 809085-091

Size (GB) 64 64

Type PC4-19200T PC4-19200T

Speed (MHz) 2,400 2,400

Speed running in the server (MHz) 2,400 2,400

Storage controller 1

Vendor and model HPE Smart Array P408i-a SR Gen10 HPE Smart Array P408i-a SR Gen10

Firmware version 1.04 1.04

Local storage (capacity)

Number of drives 2 2

Drive vendor and model Intel S4500 SSDSC2KG96 Intel S4500 SSDSC2KG96

Drive size (GB) 960 960

Drive information (speed,
interface, type) 6Gbps, SATA, SSD 6Gbps, SATA, SSD

Local storage (cache)

Number of drives 2 2

Drive vendor and model Intel S3700 SSDSC2BA40 Intel S3700 SSDSC2BA40

Drive size (GB) 400 400

Drive information (speed,
interface, type) 6Gbps, SATA, SSD 6Gbps, SATA, SSD

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 6

System configuration information vSphere with Tanzu cluster systems Bare-metal Red Hat OpenShift cluster systems

Network adapter

Vendor and model HPE 331i HPE 331i

Number and type of ports 4x 1Gb Ethernet 4x 1Gb Ethernet

Firmware version 20.6.41 20.6.41

Network adapter 2

Vendor and model Mellanox® ConnectX-3 Ethernet Adapter Mellanox ConnectX-3 Ethernet Adapter

Number and type of ports 2x 10GbE SFP 2x 10GbE SFP

Firmware version 02.40.70.04 02.40.70.04

Cooling fans

Vendor and model HPE PFR0612XHE HPE PFR0612XHE

Number of cooling fans 6 6

Power supplies

Vendor and model HPE 865408-B21 HPE 865408-B21

Number of power supplies 2 2

Wattage of each (W) 500 500

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 7

Appendix B – How we tested

Deploying VMware vSphere 7U2 with Tanzu

Installing ESXi
1. Boot into the ESXi install ISO.
2. In the installation welcome screen, press Enter to continue.
3. In the EULA, press F11 to accept and continue.
4. Select the correct drive, and press Enter to continue.
5. Select the keyboard layout, and press Enter to continue.
6. Enter a root password, and press Enter to continue.
7. In the confirm install screen, press F11 to install.
8. Repeat steps 1 through 7 for the remaining four hosts.

Configuring ESXi
1. Log into the ESXi server console.
2. Select Configure Management Network.
3. Select IPv4 Configuration.
4. In IPv4 Configuration, select a static IPv4 address, enter the appropriate IP address, and press Enter.
5. Select DNS Configuration.
6. In DNS Configuration, enter your Primary DNS server and fully qualified domain name, and press Enter.
7. To exit the management network configuration, press Esc.
8. When prompted, press Y to apply changes and restart the management network.
9. Select Troubleshooting Options.
10. In Troubleshooting Mode Options, enable ESXi Shell and SSH, and press Esc to confirm.
11. Repeat steps 1 through 10 for the remaining four hosts.

Enabling NTP on ESXi
1. Log into the ESXi server GUI.
2. Click Manage.
3. Click Time & date.
4. Click Edit NTP Settings.
5. In Edit time configuration, select Use Network Time Protocol (enable NTP client), select Start and stop with host, add your NTP server,

and click Save.
6. Repeat steps 1 through 5 for the remaining four hosts.

Installing the VMware vCenter Server Appliance
1. Download the VMware vCenter® installation ISO from the VMware support portal at https://my.vmware.com.
2. Mount the image on your local system, and browse to the vcsa-ui-installer folder. Expand the folder for your OS, and launch the installer

if it doesn’t automatically begin.
3. Once the vCenter Server Installer wizard opens, click install.
4. To begin installation of the new vCenter server appliance, click Next.
5. Check the box to accept the license agreement, and click Next.
6. Enter the IP address of a temporary ESXi host. Provide the root password, and click Next.
7. To accept the SHA1 thumbprint of the server’s certificate, click Yes.
8. Accept the VM name, and provide and confirm the root password for the VCSA. Click Next.
9. Set the size for environment you’re planning to deploy, check Thin Disk, and click Next.
10. Select the datastore to install on, accept the datastore defaults, and click Next.
11. Enter the FQDN, IP address information, and DNS servers you want to use for the vCenter server appliance. Click Next.
12. To begin deployment, click Finish.
13. When Stage 1 has completed, click Close. To confirm, click Yes.
14. Open a browser window, and connect to https://[vcenter.fqdn:5480/.
15. On the Getting Started - vCenter Server page, click Set up.
16. Enter the root password, and click Log in.
17. Click Next.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 8

https://my.vmware.com
https://[vcenter.fqdn:5480/

18. Enable SSH access, and click Next.
19. To confirm the changes, click OK.
20. Enter vsphere.local for the Single Sign-On domain name, enter a password for the administrator account, confirm it, and click Next.
21. Click Next.
22. Click Finish.

Creating a cluster in VMware vSphere
1. Open a browser and enter the address of the vCenter server you deployed (https://[vcenter.FQDN]/ui).
2. Select the vCenter server in the left panel, right-click, and select New Datacenter.
3. Provide a name for the new data center, and click OK.
4. Select the data center you just created, right-click, and select New Cluster.
5. Give a name to the cluster, and enable VMware vSphere® DRS, HA, and VMware vSAN™. Click OK.
6. In the cluster configuration panel, under Add hosts, click Add.
7. Check the box for Use the same credentials for all hosts. Enter the IP Address and root credentials for the first host, and the IP addresses

of all remaining hosts. Click Next.
8. Check the box beside Hostname/IP Address to select all hosts, and click Ok.
9. Click Next.
10. Click Finish.

Configuring Tanzu

The steps below contain the methodology for setting up the pre-requisites and deploying Tanzu in vSphere. These instructions assume
you have at least a five-host vSphere cluster running ESXi and vCenter, backed by vSAN storage. These instructions also assume you have
configured upstream networking switches to accommodate the VLANs and routing for your environment.

Tanzu prerequisites: Defining networks and IP addressing
In this section, we define the networks and addresses we used in this deployment.

Management network
This network can interact with all vSphere components and ESXi hosts. We used our VM network on a standard (not Distributed) vSwitch.
We used a 10.209.0.0/16 network scope with a gateway of 10.209.0.1. We did not assign VLAN tagging for this network. (All ports were
“untagged” or access.)

vMotion network
We defined the VMware vSphere vMotion® Network port group on a distributed vSwitch, which Tanzu Kubernetes deployment requires. We
used a 192.168.12.0/24 network scope for the vMotion network. We assigned this network as VLAN 1612.

Storage network
We defined the Storage Network port group on a Distributed vSwitch, which Tanzu Kubernetes deployment requires. We used a
192.168.13.0/24 network scope for the storage network. We assigned this network as VLAN 1613.

Workload network
We isolated this network behind a NAT gateway and used private addresses for all connectivity. We defined the Workload Network port
group on a Distributed vSwitch, which Tanzu Kubernetes deployment requires. We used a 192.168.0.0/24 network scope for the workload
network with a NAT gateway of 192.168.1.1. We assigned the network as VLAN 1614.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 9

https://[vcenter.FQDN]/ui

Required network addresses
We used the following network addresses for our configuration. Your environment may use a different address scheme as long as it meets the
requirements listed under each address section.

• HAProxy management address: 10.209.201.200/16, gateway 10.209.0.1

• HAProxy Workload address: 192.168.1.2/24, gateway 192.168.1.1

• Cluster management addresses 10.209.201.201 - 10.209.201.205

 y The Supervisor Control Plane VMs use these addresses to manage the namespace.

 y These must be five contiguous IP addresses.

 � You will only provide the starting IP of 10.209.201.201, which the shared cluster IP use.

 � The next three addresses will be individual VM IP addresses.

 � One will be for upgrade purposes.

• Worker VM addresses: 192.168.1.64/26 (192.168.1.65 - 192.168.1.126)

 y The workload network uses these addresses to provision deployed services, and the Supervisor Control Plane VMs use them to
provide connectivity to those services.

 y In this case, the CIDR notation defines a scope of addresses. When inputting the address range, exclude the first (.64) and last
(.127) addresses

• Load Balancer addresses: 192.168.1.240/29 (192.168.1.240 - 192.168.1.247)

 y The HAProxy management address and must not overlap any other network or VM (especially gateways) because the HAProxy
will bound and respond to all the addresses.

 y In this case, the CIDR notation includes the first and last addresses. You will need to provide all eight addresses to the wizard.

Configuring a cluster through Quickstart
1. Select Menu Hosts and Clusters.
2. Click the TKG Cluster.
3. In the right pane, the Quickstart view should automatically appear. Click Configure.
4. In Distributed switches, accept the defaults, add your host adapters, and click Next.
5. In vMotion traffic, complete the fields as follows, and click Next:

• Use VLAN: 1612

• Protocol: IPv4

• IP Type: Static

• Host #1 IP: 192.168.12.11

• Host #1 subnet: 255.255.255.0

• Check the autofill checkbox.

6. In Storage traffic, complete the fields as follows:

• Use VLAN: 1613

• Protocol: IPv4

• IP Type: Static

• Host #1 IP: 192.168.13.11

• Host #1 subnet: 255.255.255.0

• Check the autofill checkbox

7. In Advanced options, leave defaults, and click Next.
8. In Claim disks, ensure the correct disks are selected, and click Next.
9. In Create fault domains, accept the defaults, and click Next.
10. In Ready to complete, click Finish to create the cluster.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 10

Adding the Tanzu Kubernetes Grid Workload Network port group to the distributed switch
1. Right-click the DvSwitch you created during the cluster Quickstart wizard, and select Distributed Port Group New

Distributed Port Group.
2. Give the name Workload Network, and click Next.
3. Change the VLAN type to VLAN, set the VLAN ID to VLAN 1614, and click Next.
4. Click Finish.

Creating a DevOps user
Create a dedicated vSphere user account to access Kubernetes namespaces.

1. From the vSphere client, click Home Administration.
2. In the left panel, click Users and Groups.
3. In the right panel, click Users, select the vsphere.local domain, and click Add.
4. Provide a username and password, and click Add.
5. For simplicity, we added the DevOps user to a group with Administrator privileges. Click Groups, and select the Administrators

group. Click Edit.
6. Under Add Members, search for the DevOps user you just created, and add them to the administrators group. Click Save.

Creating the HAProxy content library
Create a content library for housing the HAProxy appliance source image.

1. Click the following link to download the vSphere compatible HAProxy OVF(v0.1.8): https://github.com/haproxytech/vmware-haproxy.
2. From the vSphere client, in the left menu pane, click Content Libraries.
3. In the Content Libraries panel on the right, click Create.
4. Name the content library HAproxy-cl and click Next.
5. Accept the default, and click Next.
6. Choose the storage location for the content library, and click Next.
7. Review, and click Finish.
8. Click the newly created HAproxy-cl content library.
9. In the upper portion of the right-side panel for HAproxy-cl, click the actions pull-down menu, and select Import Item.
10. Change the selection to local file, and click the upload files button.
11. Browse to the location of the OVF file you downloaded in step 1, and click Open.
12. Click Import.

Creating the TKG content library
Create a Tanzu Kubernetes Grid (TKG) content library for Kubernetes-specific images.

1. From the vSphere client, in the left menu pane, click Content Libraries.
2. In the Content Libraries panel on the right, click Create.
3. Name the content library TKG-cl, and click Next.
4. Select Subscribed content library, and use https://wp-content.vmware.com/v2/latest/lib.json for the subscription URL. Click Next .
5. To verify, click Yes.
6. Choose the storage location for the content library, and click Next.
7. Review, and click Finish.

Installing a pfSense gateway
1. Download the most recent release of pfSense from: https://www.pfsense.org/download/.
2. Extract the pfSense ISO.
3. Select Menu Hosts and Clusters.
4. Right-click your TKG cluster, and select New Virtual Machine.
5. In Select a creation type, select Create a new virtual machine, and click Next.
6. In Select a name and folder, name your pfSense VM, and click Next.
7. In Select a compute resource, select your TKG cluster, and click Next.
8. In Select storage, select your vSAN datastore, and click Next.
9. In Select compatibility, accept defaults, and click Next.
10. In Select a guest OS, change the OS family to Linux and the OS version to Debian GNU/Linux 10 (64-bit), and click Next.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 11

https://github.com/haproxytech/vmware-haproxy
https://wp-content.vmware.com/v2/latest/lib.json
https://www.pfsense.org/download/

11. In Customize hardware, change the following:

• CPU: 2

• Memory: 8 GB

• Hard Disk: 32 GB

• SCSI controller: LSI Logic Parallel

• Network 1: Management Network

• Network 2: Workload Network

12. Click Next.
13. Click Complete.
14. Right-click your newly created VM, and select Power On.
15. Right-click the now-on VM, and select Open Remote Console.
16. Select Removable Devices CD/DVD drive 1 Connect to Disk Image File (iso).
17. Select the pfSense ISO you downloaded.
18. After the VM boots off of the pfSense ISO, accept the license agreement.
19. Select Install.
20. Select Continue with the default keymap.
21. Select Auto (UFS) BIOS.
22. Select No.
23. Select Reboot.
24. When prompted to set up VLANs, select No.
25. For the WAN interface, select vmx0.
26. For the LAN interface, select vmx1.
27. To proceed, press Y.
28. In a web browser, navigate to the vmx1 IP Address of the pfSense VM (it should be 192.168.1.1).
29. Select to ignore the security warning.
30. Sign into the console (default username admin/pfsense).
31. In the welcome screen, click Next.
32. Click Next.
33. Enter your DNS server, and click Next.
34. Enter your time zone, and click Next.
35. In Configure WAN interface, leave defaults, and click Next.
36. In Configure LAN interface, level defaults, and click Next.
37. In Set Admin WebGUI Password, enter the password you want for the admin user, and click Next.
38. To apply the pfSense changes, click Reload.
39. To finish the pfSense installation, click Finish.

Creating storage tag
Create a storage tag for use in storage policies to control virtual machine placement.

1. From the vSphere client, select Menu Storage.
2. From the left pane, select the storage you want to tag for Tanzu.
3. Under the Summary tab, locate the Tags panel, and click Assign.
4. Click Add Tag.
5. Name the tag Tanzu. Click Create New Category.
6. Give the category name Tanzu Storage. Clear all object types except Datastore, and click Create.
7. Use the Category pull-down menu to select Tanzu Storage, and click Create.
8. Check the box beside the newly created tag, and click Assign.

Creating VM storage policies
1. From the vSphere client, click Menu Policies and Profiles.
2. On the left panel, click VM Storage Policies.
3. Click Create.
4. Create a new VM Storage policy named tkg-cl, and click Next.
5. Check the box for Enable tag based placement rules, and click Next.
6. Use the Tag Category pulldown menu to select the Tanzu Storage policy you created. Click Browse Tags.
7. Click the Tanzu checkbox, and click OK.
8. Click Next.
9. Review the compatible storage to make sure your storage target is marked as compatible, and click Next.
10. Click Finish.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 12

Deploying the HAProxy load balancer
Deploy the load balancer supported for Tanzu Kubernetes with vSphere

1. From the vSphere client, click Menu Content Libraries.
2. Click the HAproxy-cl library.
3. In the left panel, click OVF & OVA Templates, and right-click the HAproxy template that appears in the panel below, and select New VM

from This Template…
4. Provide a simple name (we used HAproxy), and select the Datacenter and/or folder you want to deploy to. Click Next.
5. Select the cluster or compute resource where you want to deploy the HAProxy VM, and click Next.
6. Review details, and click Next.
7. Check the box to accept all license agreements, and click Next.
8. Accept the default configuration, and click Next.
9. Select the target storage for the VM, and click Next.
10. Select VM Network for the Management network, and choose a network for the workload network. Choose the same network for the

Frontend network, and click Next.
11. Customize the template using the following:

• Appliance configuration section

 y For the root password, we used Password1!

 y Check the box for Permit Root Login.

 y Leave the TLS CA blank.

• Network configuration section

 yWe left the default, haproxy.local.

 y Configure a local DNS server.

 y For management IP, we used 10.209.201.200/16.

 y For management gateway, we used 10.209.0.1.

 y NOTE: The description asks for the workload network gateway address. You should enter the management gateway
address instead.

 y For Workload IP, we used 192.168.1.2/24.

 y For Workload gateway, we used 192.168.1.1.

• Load Balancing section

 y For load balancer IP ranges, we used 192.168.1.240/29.

 y Accept the default management port.

 y For HAProxy User ID, we used admin.

 y For the HAProxy password, we used Password1!

12. Click Next.
13. Review the summary, and click Finish.

The deployment will take a few minutes to completely deploy and configure.
14. Power on the HAProxy VM.

Adding licenses
1. Select Menu Administration.

2. In the left pane, select Licenses.

3. In Licenses, click Add New Licenses.

4. In Enter license keys, enter the license keys for your deployment, and click Next.

5. In Edit license names, rename the licenses if desired, and click Next.

6. In Ready to complete, click Finish.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 13

Configuring Workload Management
Configure the vSphere environment for Kubernetes.

1. From the vSphere client, click Menu Workload Management.

2. Click Get Started.

3. Review the messages and warnings regarding supported configurations, and click Next.

4. Select the Cluster on which you want to enable workload management, and click Next.

5. Choose the capacity for the control plane VMs (we chose Small). Click Next.

6. Choose the storage policy you wish to use for the control plane nodes (we chose tkg-clusters). Click Next.

7. Configure the Load Balancer section with the following:

• Name: haproxy

• Type: HA proxy

• Data plane API Addresses: 10.209.201.200:5556

• User name: admin

• Password: Password1!

• IP Address Ranges for Virtual Servers: 192.168.1.240-192.168.1.247

• Server Certificate Authority: [copy and pasted from the instructions in step 10 below]

8. Open an SSH session to the HAProxy management address and connect using root and Password1!

9. Type the following: cat /etc/haproxy/ca.crt

10. Copy the entire output (including the first and last lines) and paste the contents into the Server Certificate Authority box) in the last line
under step 7 above.

11. Close the SSH session.

12. Click Next.

13. Configure Workload Management with the following:

• Network: VM Network

• Starting IP Address: 10.209.201.201

• Subnet Mask: 255.255.0.0

• Gateway: 10.209.0.1

• DNS Server: 10.41.0.10

• NTP Server: 10.40.0.1

14. Click Next.

15. Configure Workload Network with the following:

• Leave the default for Services addresses.

• DNS Servers: 10.41.0.10

• Under Workload Network, click Add.

• Accept default for network-1.

• Port Group: Workload Network

• Gateway: 192.168.1.1

• Subnet: 255.255.255.0

 y IP Address Ranges: 192.168.1.65-192.168.1.126

16. Click Save.

17. For TKG Configuration, beside Add Content Library, click Add.

18. Select the TKG-cl library, and click OK.

19. Click Next.

20. Click Finish.
The workload management cluster will deploy and configure. You may see apparent errors during configuration, but vCenter will resolve
them upon successful completion.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 14

Configuring namespaces
Configure the Kubernetes namespace for services deployment.

1. In Workload Management, click Namespaces.

2. Click Create Namespace.

3. Select the target cluster, and provide a name. We used tanzu-ns. Click Create.

4. The new namespace is created. Click the Permissions tab, and click Add.

5. Choose vSphere.local for the identity source. Search for the DevOps user you created. Select the “can edit” role. Click OK.

6. Click the Storage tab.

7. In the Storage Policies section, click Edit.

8. Select the tkg-clusters policy, and click OK. The environment is ready for connection and deployment of containers.

Deploying Red Hat OpenShift 4.7

Configuring DNS
1. Log into your domain controller.

2. Press the Start key, type DNS and press Return.

3. In DNS manager, navigate to your domain’s forward lookup zone.

4. Right-click your forward lookup zone, and select New Host (A or AAAA).

5. In the New Host screen, make sure that Create associated pointer (PTR) record is selected, then input the host name and IP address,
and click Add Host.

6. Click OK to acknowledge the creation of the host.

7. Repeat steps 5 and 6 for the following hosts:

api.openshift 10.209.60.201

api-int.openshift 10.209.60.201

*.apps.openshift 10.209.60.202

bootstrap.openshift 10.209.60.10

master-0.openshift 10.209.60.11

master-1.openshift 10.209.60.12

master-2.openshift 10.209.60.13

worker-0.openshift 10.209.60.21

worker-1.openshift 10.209.60.22

worker-2.openshift 10.209.60.23

worker-3.openshift 10.209.60.24

worker-4.openshift 10.209.60.25

Installing the Red Hat OpenShift provisioner
We installed our OpenShift installer on a physical host with a network connection to the infrastructure network.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 15

Installing RHEL
1. Connect a RHEL 8.4 installation disk image to the host.
2. Boot the host off the RHEL installation disk.
3. When choosing what to boot, select Install Red Hat Enterprise Linux 8.4.0
4. Once the installer loads, click Next to move past the start screen.
5. In the Installation Summary screen, click Installation Destination.
6. In the Installation Destination screen, accept the default, and click Done.
7. In the Installation Summary screen, click KDUMP.
8. In the KDUMP screen, uncheck Enable kdump, and click Done.
9. In the Installation Summary screen, click Software Selection.
10. Select Minimal Install, and click Done.
11. In the Installation Summary screen, click Network & Host Name.
12. In Network & Host Name, choose your hostname, turn your Ethernet connection on, and click Configure.
13. In Editing [your Ethernet connection], click Connect automatically with priority: 0, and click Save.
14. Click Done.
15. In the Installation Summary screen, click Begin Installation.
16. In the Configuration screen, click Root Password.
17. In Root Password, type your root password, and click Done.
18. When the installation is complete, click Reboot to reboot into the OS.

Creating an SSH private key
1. Log into the OpenShift installer
2. Create a non-root user account with root access for OpenShift:

useradd kni

passwd kni

echo "kni ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/kni

chmod 0440 /etc/sudoers.d/kni

3. To create an SSH key for your new user that you will use for communication between your cluster hosts, type the following command:

su - kni -c "ssh-keygen -t ed25519 -f /home/kni/.ssh/id_rsa -N ''"

When configuring your OpenShift install_config.yaml file, you will need to use the information in /home/kni/.ssh/id_rsa.pub to fill in
the sshKey value.

Installing the OpenShift installer
1. Log into the kni user on the OpenShift provisioner.
2. Disable the firewall service:

sudo systemctl stop firewalld

sudo systemctl diable firealld

3. Register your RHEL installation to Red Hat to allow your system to install updates.
4. Install the prerequisites for the OpenShift installation:

sudo dnf install -y libvirt qemu-kvm mkisofs python3-devel jq ipmitool

5. Modify and start the libvirtd service:

sudo usermod --append --groups libvirt kni

sudo systemctl enable libvirtd --now

6. Create the default storage pool:

sudo virsh pool-define-as --name default --type dir --target /var/lib/libvirt/images

sudo virsh pool-start default

sudo virsh pool-autostart default

7. Copy the Pull Secret file to the OpenShift install machine.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 16

8. Set the environmental variables that will grab the OpenShift install files:

export VERSION=latest-4.7

export RELEASE_IMAGE=$(curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/
release.txt | grep 'Pull From: quay.io' | awk -F ' ' '{print $3}')

export cmd=openshift-baremetal-install

export pullsecret_file=~/pull-secret.txt

export pullsecret_file=~/pull-secret

export extract_dir=$(pwd)

9. Download and unpack the OpenShift file:

curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-linux.
tar.gz | tar zxvf - oc

sudo cp oc /usr/local/bin

10. Using the OpenShift executable, download and extract the OpenShift installer, then move it to the bin directory:

oc adm release extract --registry-config "${pullsecret_file}" --command=$cmd --to "${extract_dir}"
${RELEASE_IMAGE}

sudo cp openshift-baremetal-install /usr/local/bin

Running an OpenShift install using installer-provided infrastructure
1. Create an install-config.yaml for your testbed. We have provided an example below:

apiVersion: v1

baseDomain: [the domain you're using]

metadata:

 name: openshift

networking:

 machineCIDR: [a routable CIDR pool that can reach the Internet]

 networkType: OVNKubernetes

compute:

- name: worker

 replicas: 5

controlPlane:

 name: master

 replicas: 3

 platform:

 baremetal: {}

platform:

 baremetal:

 apiVIP: 10.209.60.201

 ingressVIP: 10.209.60.202

 provisioningNetwork: "Disabled"

 bootstrapProvisioningIP: 10.209.60.10

 hosts:

 - name: master-0

 role: master

 bmc:

 address: redfish-virtualmedia://10.209.101.11/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

hardwareProfile: default

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: master-1

 role: master

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 17

 bmc:

 address: redfish-virtualmedia://10.209.101.12/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 hardwareProfile: default

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: master-2

 role: master

 bmc:

 address: redfish-virtualmedia://10.209.101.13/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 hardwareProfile: default

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: worker-0

 role: worker

 bmc:

 address: redfish-virtualmedia://10.209.101.21/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: worker-1

 role: worker

 bmc:

 address: redfish-virtualmedia://10.209.101.22/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: worker-2

 role: worker

 bmc:

 address: redfish-virtualmedia://10.209.101.23/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: worker-3

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 18

 role: worker

 bmc:

 address: redfish-virtualmedia://10.209.101.24/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

 - name: worker-4

 role: worker

 bmc:

 address: redfish-virtualmedia://10.209.101.25/redfish/v1/Systems/1

 username: Administrator

 password: Password1

 disableCertificateVerification: True

 bootMACAddress: [the MAC address of the NIC you're planning to use]

 rootDeviceHints:

 model: "LOGICAL"

 minSizeGigabytes: 300

pullSecret: '[your pull secret text]'

sshKey: '[your public SSH key]'

2. Create an install directory:

mkdir clusterconfig

3. Copy install-config.yaml into your install directory:

cp install-config.yaml clusterconfig/

4. Run the following command to generate the Kubernetes manifests for your OpenShift cluster:

openshift-baremetal-install --dir=clusterconfig create manifests

5. Create the Ignition files:

openshift-baremetal-install --dir=clusterconfig create cluster

Creating the Local Storage operator
1. Log into your OpenShift Container Platform cluster.
2. Click Operators OperatorHub.
3. In the search box, type Local Storage
4. When the Local Storage operator appears, click it.
5. In the right side of the screen, click Install.
6. In the Create Operator Subscription screen, accept all defaults, and click Subscribe.

The installation of the operator is complete when the Installed Operators status page lists Local Storage as Succeeded.

Creating the OpenShift Container Storage operator
1. Click Operators OperatorHub.
2. In the search box, type OpenShift Container Storage
3. When the OpenShift Container Storage operator appears, click it.
4. In the right side of the screen, click Install.
5. In the Create Operator Subscription screen, accept all defaults, and click Subscribe.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 19

Creating an OpenShift Container Storage cluster
1. Click Operators Installed Operators.
2. Click on OpenShift Container Storage.
3. In OpenShift Container Storage, under the Storage Cluster option, select Create Instance.
4. In the Create Instance screen, make sure Internal-Attached devices is selected, select All Nodes, and click Next.
5. In the Create Storage Class screen, enter the Volume Set Name, and click Next.
6. When a pop-up warns you that this cannot be undone, click Yes to continue.
7. In the Set Storage and nodes screen, wait for the Storage Class to finish creating, and click Next.
8. In the Security configuration screen, leave Enable encryption unchecked, and click Next.
9. In the Review screen, click Create to kick off the OCS cluster creation.

Installing and running the pod-density test with VMware vSphere with Tanzu
1. Deploy the Tanzu Kubernetes Grid cluster from your Workload Management namespace. The specification file we used, new-tkg-cluster.

yaml, is in the Files we used in our testing section of this document.

kubectl apply -f new-tkg-cluster.yaml

2. After the cluster is created (it may take some time), log into the cluster by first logging out of the Workload Management namespace
context, and logging into the context of the new cluster you created.

kubectl vsphere logout

kubectl vsphere login --insecure-skip-tls-verify --vsphere-username devops@vsphere.local
--server=https://10.209.201.201 --tanzu-kubernetes-cluster-namespace tkg-workload --tanzu-
kubernetes-cluster-name tkg-cluster-01

3. Deploy the application, which is based on this example: https://github.com/paulbouwer/hello-kubernetes. The specification file, hello-
kubernetes.yaml, is in the Files we used in our testing section of this document.

kubectl apply -f hello-kubernetes.yaml

4. To set the number of pods, scale the replicas. To limit the stress on cluster resources, we added replicas in batches of 100 until we
reached the final number. For example, to scale to 300 pods, we added pods in three steps:

kubectl scale deployment hello-kubernetes --replicas=100

wait until all pods have started

kubectl scale deployment hello-kubernetes --replicas=200

wait until all pods have started

kubectl scale deployment hello-kubernetes --replicas=300

wait until all pods have started

5. Get the external IP address for the service:

kubectl get svc hello-kubernetes

6. To perform the test, execute this script that sends an unending set of queries to the load balancer’s IP address, which you found in step
5. For example, if the IP address was 10.233.59.17, the script would be:

while : ; do

 curl -s --connect-timeout 10 http://10.233.59.17 -w \

 '\n%{time_total} hello-kubernetes- 0000\n'

done | grep hello-kubernetes- | tee pod-density-results.txt

7. To end the test, type Control+C. The results file contains the name of the pod that received and responded to the query and the total
time needed to complete the request.

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 20

https://github.com/paulbouwer/hello-kubernetes

Installing and running the pod-density test with Red Hat OpenShift
1. Deploy the application, which is based on this example: https://github.com/paulbouwer/hello-kubernetes. The specification file, hello-

kubernetes.yaml, is in the Files we used in our testing section of this document.

oc apply -f hello-kubernetes.yaml

2. To set the number of pods, scale the replicas. To limit the stress on cluster resources, we added replicas in batches of 100 until we
reached the final number. For example, to scale to 300 pods, we added pods in three steps:

oc scale deployment hello-kubernetes --replicas=100 –n hello

wait until all pods have started

oc scale deployment hello-kubernetes --replicas=200 –n hello

wait until all pods have started

oc scale deployment hello-kubernetes --replicas=300 –n hello

wait until all pods have started

3. Get the external IP address for the service:

kubectl get svc hello-kubernetes –n hello

4. To perform the test, execute this script that sends an unending set of queries to the load balancer’s IP address, which you found in step
3. For example, if the IP address was 10.233.59.17, the script would be:

while : ; do

 curl -s --connect-timeout 10 http://10.233.59.17 -w \

 '\n%{time_total} hello-kubernetes- 0000\n'

done | grep hello-kubernetes- | tee pod-density-results.txt

5. To end the test, type Control+C. The results file contains the name of the pod that received and responded to the query and the total
time needed to complete the request.

Files we used in our testing

new-tkg-cluster.yaml
We used the new-tkg-cluster.yaml file only for the VMware vSphere with Tanzu environment.

apiVersion: run.tanzu.vmware.com/v1alpha1

kind: TanzuKubernetesCluster

metadata:

 name: tkg-cluster-01

 namespace: tkg-workload

spec:

 distribution:

 version: 1.19.7+vmware.1-tkg.1.fc82c41

 topology:

 controlPlane:

 count: 3

 class: guaranteed-medium

 storageClass: tkg-storage-policy

 workers:

 count: 130

 class: best-effort-medium

 storageClass: tkg-storage-policy

 settings:

 storage:

 defaultClass: tkg-storage-policy

 network:

 cni:

 name: antrea

 services:

 cidrBlocks: ["172.17.0.0/16"]

 pods:

 cidrBlocks: ["172.18.0.0/16"]

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 21

https://github.com/paulbouwer/hello-kubernetes

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

This project was commissioned by VMware.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

hello-kubernetes.yaml
We used this same hello-kubernetes.yaml file for both environments for identical workloads.

apiVersion: v1

kind: Service

metadata:

 name: hello-kubernetes

spec:

 type: LoadBalancer

 ports:

 - port: 80

 targetPort: 8080

 selector:

 app: hello-kubernetes

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello-kubernetes

spec:

 replicas: 1

 selector:

 matchLabels:

 app: hello-kubernetes

 template:

 metadata:

 labels:

 app: hello-kubernetes

 spec:

 containers:

 - name: hello-kubernetes

 image: paulbouwer/hello-kubernetes:1.9

 ports:

 - containerPort: 8080

Pod density comparison: VMware vSphere with Tanzu vs. a bare-metal approach using Red Hat OpenShift 4.7 November 2021 (Revised) | 22

http://www.principledtechnologies.com

