

HARDWARE-ASSISTED VIRTUALIZED-I/O MESSAGING
ANALYSIS ON RED HAT ENTERPRISE LINUX 6

NOVEMBER 2010

A PRINCIPLED TECHNOLOGIES TEST REPORT
Commissioned by Red Hat, Inc.

OUR FINDINGS
Companies who rely upon time-sensitive, high-

communication software applications require the

lowest possible messaging latency. In Principled

Technologies’ tests in our labs, hardware-assisted

Single Root I/O Virtualization (SR-IOV) guest virtual

machines delivered messages on Red Hat

Enterprise Linux 6.0 with Kernel-based Virtual

Machine (KVM) with less than half the latency of

standard KVM bridged networking for message

sizes ranging from 8 to 1,024 bytes.

OUR PROCESS
To analyze the Advanced Message Queuing

Protocol (AMQP) performance of the KVM

hypervisor platform with different network I/O

connections between the KVM guest and the host’s

network interface card (NIC), we used the profiling

tools that Red Hat includes with MRG Messaging to

compare both throughput and latency with and

without SR-IOV hardware-assisted network I/O.

A Principled Technologies test report 2

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

PROJECT OVERVIEW
We ran Red Hat Enterprise Linux 6.0 with KVM on a server using the Intel® Ethernet Server Adapter

X520-SR2, which can present up to 64 direct, virtualized network interfaces per port to the operating system

and its guests via SR-IOV technology. PCI passthrough also provides direct connections between guests and

the host’s NIC, but can present only one interface per port. We tested the messaging performance of KVM

guests in a configuration where standard PCI passthrough is not possible; that is, we use twice as many guests

as there are network ports. For such a configuration, another network virtualization choice is to use a software

bridge between the guest and the host’s NIC. We compared the messaging performance for SR-IOV

networking to this bridged networking with paravirtualized virtio network drivers on the guest.

To use SR-IOV to directly connect a guest to the host’s NIC, the BIOS, server hardware, network

adaptor, and operating system must all support the technology. We installed Red Hat Enterprise Linux 6

(kernel-2.6.32-71.el6) as the host operating system on a DellTM R710 PowerEdgeTM server with an SR-IOV

enabled Dell BIOS and with an Intel X520-SR2 10Gb NIC.

We used the Advanced Message Queuing Protocol (AMQP) programs, qpid-perftest and qpid-latency-

test, to compare both throughput and latency on the KVM hypervisor platform with different network I/O

connections between the KVM guest and the host’s NIC. We ran each test with bridged networking between

the guest and NIC and with SR-

IOV passthrough between the

guest and NIC. For a baseline,

we also ran each test without

guest virtualization where each

AMQP process could access the

NIC without passing through

any KVM layers (we refer to

this baseline as bare metal).

Qpid-latency-test scores

measure response times,

making lower numbers better,

while qpid-perftest scores

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

8 32 64 256 1,024

M
ill

is
ec

o
n

d
s

Message size in bytes

Latency test results

Bare metal

Red Hat KVM
SR-IOV guest

Red Hat KVM
bridged guest

Figure 1: Latency test results, in milliseconds, for the three configurations at differing
message sizes. Lower numbers are better.

A Principled Technologies test report 3

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

measure number of messages

transmitted successfully per

second, making higher numbers

better. The What we tested

section explains the qpid-

perftest and qpid-latency-test

workloads in greater detail.

Figures 1 and 2 show the

latency and throughput test

results, respectively, of bare

metal and KVM with the two

networking approaches while

running four guests on the host. The messaging latencies in the SR-IOV RHEL 6 KVM configuration were

consistently two and one half times lower than those in the bridged networking configuration, and were

within 20 percent of bare metal. The throughout performance for the SR-IOV and bridged configurations were

comparable until a message size of 1,024 bytes. In the What we found section, we discuss the latency and

throughput tests further.

For the latency tests, all configurations featured two virtual CPUs (vCPUs) and 5 GB of RAM on each

guest. For the throughput tests, the bare metal and

bridged configurations featured six vCPUs on each

guest, and the SR-IOV configuration featured five

vCPUs per guest. We choose to use fewer vCPUs

for SR-IOV in order to dedicate two CPUs for

interrupt handling in the SR-IOV network driver.

The boot partition was on the virtual IDE

controller. We used no external storage for this

test.

Figure 3 illustrates the test bed

configuration. We configured the AMQP broker host as follows: two Intel Xeon® X5670 2.93 GHz processors

0

500,000

1,000,000

1,500,000

2,000,000

8 32 64 256 1,024

M
e

ss
ag

e
s

p
e

r
se

co
n

d

Message size in bytes

Throughput test results

Bare metal

Red Hat KVM
SR-IOV guest

Red Hat KVM
bridged guest

Figure 2: Throughput test results, in message per second, for the three configurations at
differing message sizes. Higher numbers are better.

Figure 3: Schematic of the test bed.

A Principled Technologies test report 4

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

with 24 GB RAM, and one 10Gb Intel X520-SR2 NIC. We installed and ran the qpid-perftest and qpid-latency-

test workloads from two physical clients configured as follows: one client with two Intel Xeon Processors

E5520 2.27 GHz and the second with two Intel Xeon Processors E5540 2.53 GHz. Both clients had 48 GB of

RAM, one 10Gb Intel X520-SR NIC, and two SAS 15K 73GB hard drives. We installed Red Hat Enterprise Linux 6

(kernel-2.6.32-71.el6) as the operating system for the client systems and cabled the client NICs directly to the

server under test in a peer-to- peer configuration.

WHAT WE TESTED
We conducted our testing using the software Red Hat includes in Enterprise MRG Messaging

technology. The qpid-perftest and qpid-latency-test applications test throughput and latency, respectively,

using MRG Messaging as the underlying software.

MRG Messaging enables the creation of distributed applications in which programs exchange data via

sending and receiving messages. An organization can distribute a single application over a network,

irrespective of differing operating systems, network protocols, or languages. In the MRG messaging model, the

producer is any program that sends messages, the consumer is any program that receives them, and a broker

is a messaging hub that routes messages from the publisher to their appropriate consumer (see Figure 4).

The producer sends messages to exchanges, while consumers subscribe to queues to receive the

messages. Exchanges use routing and binding information to decide which queue to deliver a message to (see

Figure 5).

Thus, the

procedure is as follows:

the producer sends a

message to the

exchange, where the

exchange then assesses

the bindings and places

the message in the

correct queue. The

consumers then retrieve

the messages from the

Figure 4: High-level view of the MRG messaging model. The producer is any program that sends
messages, the consumer is any program that receives them, and a broker is a messaging hub that
routes messages from the publisher to their appropriate consumer.

A Principled Technologies test report 5

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

correct queues.

Red Hat MRG

Messaging uses the

Advanced Message

Queuing Protocol

(AMQP) protocol, an

open-source messaging

protocol, and is based

on Apache Qpid (Qpid),

a multi-platform

messaging

implementation of the

AMQP protocol. Red

Hat Enterprise MRG

Messaging adds to Qpid by implementing certain message persistence and durability options, Linux kernel

optimizations, clustering and failover options, support for transactions, and additional OS services.

Our MRG Messaging configuration involves three systems: two client systems (producer/subscriber)

and the server under test (broker). Acting as producer, the client systems generate messages that each sends

to the broker in virtual machines on the server under test. The brokers inside the virtual machines contain

exchanges that then route these messages to the subscriber, which in our case, was, again, the client systems.

The qpid-perftest program measures throughput as the total number of messages reliably transferred,

divided by the time it took to transfer those messages. To run each test, qpid-perftest creates a control queue

and manages the send-receive message process. When the message transfers are complete, qpid-perftest

then records a timestamp and calculates the transfer rate for the messages. For each throughput

configuration, we sent one million messages and ran each configuration 15 times.

The qpid-latency-test program measures messaging latency as the total time it takes the producer

(client system) to send messages to the broker (server under test) and for the exchange inside the broker

(server under test) to route the message back to the subscriber (client system). The client system reports the

minimum, maximum, and average reporting interval time when using a rate, and reports all the sent messages

Figure 5: How the MRG messaging model broker handles messages. The producer sends messages
to exchanges, while consumers subscribe to queues to receive the messages. Exchanges use
routing and binding information to decide which queue to deliver a message to.

A Principled Technologies test report 6

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

when using a count. Qpid-latency-test specifies a message count and timestamps all messages, and measures

latency in milliseconds (ms). We ran all latency configurations for 60-second durations and ran each

configuration nine times. We ran each workload for messages of 8, 32, 64, 512, and 1,024 bytes.

For messaging throughput tests, the goal was to see how many messages could complete in a certain

time, and for messaging latency, the goal was to determine the quickest response possible. We ran each

workload for messages of 8, 32, 64, 512, and 1,024 bytes.

For each workload, we ran two virtual networking configurations and one unvirtualized (bare metal).

The first virtualized configuration was a typical bridged scenario, while the second configuration used SR-IOV

passthrough, where a guest directly drives the PCI device.

WHAT WE FOUND
Here we review the test results for both messaging latency and throughput tests. For each latency-test

configuration, we ran 9 iterations of the workload, and 15 iterations for throughout tests. We chose the run

that corresponded to the median standard deviation, and report the results from that run for each

configuration.

Messaging latency tests

Figure 6 shows the median latencies, in milliseconds, for the bare metal configuration and for Red Hat

KVM running four AMQP brokers at differing message sizes with bridged networking and SR-IOV passthrough.

The latencies using SR-IOV hardware-assisted networking were approximately 2.5 times better than those

using software-assisted networking and were within 20 percent of bare metal (unvirtualized AMQP brokers)

over the entire range of message sizes.

Message size in bytes Bare metal
Red Hat KVM
SR-IOV guests

Red Hat KVM
bridged guests

8 0.156132 0.190674 0.473136

32 0.156916 0.190900 0.473425

64 0.156558 0.190457 0.473871

256 0.150549 0.190061 0.462908

1,024 0.164895 0.197115 0.469656

Figure 6: Latency test results, in milliseconds, for the three configurations at differing message sizes. Lower numbers are
better.

A Principled Technologies test report 7

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

Messaging throughput tests

Figure 7 shows the throughput results, in messages per second for the bare metal configuration and for

Red Hat KVM running four AMQP brokers at differing message sizes with bridged networking and SR-IOV

passthrough. The throughputs for SR-IOV and bridged networking were equal to within 1 to 3 percent for

small message sizes. The SR-IOV throughputs were 22 percent higher than bridged networking for largest

message size. The SR-IOV throughputs were generally within 10 to 15 percent of bare metal values with the

exception of the 256-byte message (30 percent lower than bare metal values).

Message size in bytes Bare metal
Red Hat KVM
SR-IOV guests

Red Hat KVM
bridged guests

8 1,980,471 1,833,481 1,782,404

32 1,971,225 1,754,824 1,768,600

64 1,980,776 1,764,252 1,770,448

256 1,939,169 1,498,026 1,500,313

1,024 1,556,762 1,344,517 1,052,262

Figure 7: Throughput test results, in messages per second, for the three configurations at differing message sizes. Higher
numbers are better.

HOW WE TESTED

Adjusting BIOS settings

We enabled the virtualization feature in the host BIOS for our virtualization testing and enabled the SR-

IOV feature in the BIOS for our SR-IOV testing. We disabled C-states and set Power Management to Maximum

Performance for this testing.

Setting up the host server with Red Hat Enterprise Linux 6 with KVM

For the Red Hat KVM configuration, we installed kernel-2.6.32-71.el6 of Red Hat Enterprise Linux 6 on

the host server, and then installed the packages necessary for KVM and AMQP.

Installing Red Hat Enterprise Linux 6

1. Insert and boot from the Red Hat Enterprise Linux 6.0 Install DVD.
2. Press Enter to install using graphical mode.
3. At the media test screen, select Skip.
4. At the Red Hat Enterprise Linux 6 title screen, click Next.
5. At the Choose an Installation Language screen, select English, and click Next.
6. At the Keyboard Type screen, select U.S. English, and click Next.
7. At the Storage Devices screen, select Basic Storage Devices, and click Next.
8. If a warning for device initialization appears, select Re-initialize for every storage device needed by

the installation.

A Principled Technologies test report 8

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

9. At the Name the Computer screen, type ##.domain.com, where ## is the host name, and click
Next.

10. At the Time zone selection screen, select the appropriate time zone, and click Next.
11. Enter the root password in the Root Password and Confirm fields, and click Next.
12. At the Partition selection screen, select Replace Existing Linux System(s), and click Next.
13. If a warning appears, click Write changes to disk.
14. At the default installation screen, click Next to begin the installation.
15. At the Congratulations screen, click Reboot.
16. After the system reboots and at the logon screen, type root for the user, enter the root password,

and press Enter.

Installing the KVM packages in Red Hat Enterprise Linux 6

1. Copy the Red Hat Enterprise Linux 6.0 ISO image, and mount it at /mnt/rhel60/:

 # mount –o loop /PATH/TO/ISO /mnt/rhel60

2. Create a text file at /etc/yum.repos.d/rhel-60-local.repo with the following contents:

 [rhel-60-beta-dvd]

 name=Red Hat Enterprise Linux $releasever - $basearch - DVD

 baseurl=file:///mnt/rhel60/Server/

 enabled=1

 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-beta

3. Install the two GPG keys located on the Red Hat ISO by typing the following commands in a
command prompt:

 # rpm --import /mnt/rhel60/RPM-GPG-KEY-redhat-beta

 # rpm --import /mnt/rhel60/RPM-GPG-KEY-redhat-release

4. Type the following command to install KVM packages:

 # yum groupinstall Virtualization “Virtualization Client” \

“Virtualization Platform”

Setting up the network adapters on Red Hat Enterprise Linux KVM for bare metal and SR-IOV tests.

1. Log onto the host.
2. Type the following command to edit the network configuration settings, where X is the relevant

host network interface to modify:

 # vi /etc/sysconfig/network-scripts/ifcfg-ethX

3. Modify the following lines to set the static IP address and netmask, where XXX represents the
remaining parts of the relevant IP address:

 BOOTPROTO=static

 IPADDR=192.168.XXX.XXX

 NETMASK=255.255.255.0

A Principled Technologies test report 9

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

 IPV6INIT=no

4. Save the file, and exit vi.
5. Repeat steps 2 through 4 for the remaining interfaces.
6. Type the following command to modify the remaining network settings:

 # vi /etc/sysconfig/network

7. Modify the following lines to set the default IP gateway where XXX represents the remaining parts
of the relevant gateway IP address.

 NETWORKING=yes

 HOSTNAME=hostname.local.domain

 GATEWAY=192.168.XXX.XXX

8. Save the file, and exit vi.
9. Type the following command to restart the network services:

 # service network restart

Setting up the client with the Red Hat Enterprise Linux 6

For the Red Hat client to drive the workloads, we installed Red Hat Enterprise Linux 6 (kernel-2.6.32-

44-1.el6) on the server following the instructions in section Installing Red Hat Enterprise Linux 6, and then

installed the packages necessary for AMQP, following the instructions in the section Installing AMQP on the

host, client and host VMs.

Completing configurations in the Red Hat KVM host

Disabling unneeded services

1. Disable the following services by running this bash shell loop:

for service in \

 abrtd atd auditd autofs certmonger cgred crond dnsmasq ebtables

haldaemon ip6tables iptables iscsi iscsid kdump ksm ksmtune libvirtd

mdmonitor messagebus netconsole netfs nfs nfslock nscd nslcd oddjobd

postfix psacct qpidd rdisc restorecond rhnsd rpcbind rpcgssd

rpcidmapd rpcsvcgssd saslauthd smartd sssd ypbind;

do

 chkconfig $service off

 service $service stop

done

chkconfig –level 0123456 cpuspeed off

service cpuspeed stop

Disabling SELinux on the KVM host.

1. Log onto the host.

A Principled Technologies test report 10

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

2. Type the following command to edit the SELinux configuration settings:

vi /etc/selinux/config

3. Change the line beginning with SELINUX= to

SELINUX=disabled

4. Save the file, and exit vi.

Enabling huge pages memory functionality in Red Hat KVM

1. Log onto the host.
2. Type the following command to edit the system configuration settings:

vi /etc/sysctl.conf

3. Add the following lines to the bottom of the file to reserve approximately 17.5GB for VM huge
pages, with each page of size 2,048 KB:

vm.nr_hugepages = 9000

4. Save the file, and exit vi
5. Type the following command to edit the fstab file:

vi /etc/fstab

6. Add the following line to the bottom of the file:

hugetlbfs /mnt/libhugetlbfs hugetlbfs defaults 0 0

7. Save the file, and exit vi.
8. Type the following to create the directory for the hugepages files:

mkdir –p /mnt/libhugetlbfs

9. Type the following commands to immediately activate hugepages, if desired:

 # sysctl vm.nr_hugepages=9000

 # mount /mnt/libhugetlbfs

Setting up the bridged network for the Red Hat Enterprise Linux KVM

1. Log onto the host.
2. Type the following command to create a configuration file for the bridged network device:

 # vi /etc/sysconfig/network-scripts/ifcfg-br0

3. Add the following lines to the file. Note that, in the below example, XXX signifies a placeholder:

Interface details – copy from ifcfg-ethX file

DEVICE=br0

A Principled Technologies test report 11

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

TYPE=Bridge

DELAY=0

NM_CONTROLLED=no

BOOTPROTO=none

ONBOOT=yes

IPV6INIT=no

IPADDR=192.168.XXX.XXX

NETMASK=255.255.255.0

4. Save the file, and exit vi.
5. Type the following command to edit the ifcfg-ethX file, where X is the number of the network

interafce you are using for the bridge:

 # vi /etc/sysconfig/network-scripts/ifcfg-ethX

6. Modify the file to point to the bridge device:

Interface details

DEVICE=eth0

HWADDR=00:1B:21:29:CE:74

NM_CONTROLLED=no

BRIDGE=br0

7. Save the file, and exit vi.
8. Repeat for each 10Gb interface.
9. Restart the network by typing the following:

 # service network restart

Setting the elevator=deadline option in the grub.conf file

1. Log onto the host.
2. Type the following command to edit the grub configuration settings:

 # vi /etc/grub.conf

3. Add the following text to the end of kernel line:

 elevator=deadline

4. Save the file, and exit vi.

Setting system start parameters in the /etc/sysctl.conf file

1. Log onto the host, right-click the desktop, and choose Open Terminal.
2. Type the following command to edit the system configuration settings:

 # vi /etc/sysctl.conf

3. Add or modify the following lines:

A Principled Technologies test report 12

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

kernel.msgmni = 16384

kernel.sem = 250 32000 32 2048

kernel.msgmax = 65535

kernel.msgmnb = 1310724

fs.file-max = 65536

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.default.arp_filter = 1

4. Save the file, and exit vi.

Creating and configuring the VMs

Creating the first guest using the Virtual Machine Manager

1. Log onto the Red Hat Enterprise Linux 6.0 host.
2. Go to ApplicationsSystem ToolsVirtual Machine Manager.
3. Click New.
4. Click Forward.
5. Choose a name for the guest. Click Forward.
6. Keep the default of Fully virtualized, choose the CPU architecture, and choose kvm as the

hypervisor.
7. Assuming you have copied the Red Hat Enterprise Linux 6 media to the host machine, choose Local

install media, Linux as the OS Type, and Red Hat Enterprise 6 as the OS Variant. Click Forward.
8. Click Browse to browse to the ISO Linux location.
9. Locate the ISO file, select it, and click Open. Click Forward.
10. Choose File (disk image), and specify the location where you wish to store the IMG file. In our case,

we chose the default location.
11. Specify 8192MB for the size of the IMG file, and uncheck and recheck the Allocate entire virtual

disk now checkbox. Click Forward.
12. Choose Shared physical device, and select the management NIC.
13. Set Max memory size and Startup memory size to 8192MB, and set the number of Virtual CPUs to

12. Click Forward.
14. Review the summary information, and click Finish.

Installing the guest operating system

1. Double-click the new VM to connect to the console.
2. On the Hardware tab in Virtual Machine Manager, specify the ISO image on the host machine as

the CD drive of the VM. Right-click the VM, and choose Run.
3. Power on the VM.
4. Press Enter to install using graphical mode.
5. At the media test screen, select Skip.
6. At the Red Hat Enterprise Linux 6 title screen, click Next.
7. At the Choose an Installation Language screen, select English, and click Next.
8. At the Keyboard Type screen, select U.S. English, and click Next.
9. At the Storage Devices screen, select Basic Storage Devices, and click Next.

A Principled Technologies test report 13

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

10. If a warning for device initialization appears, select Re-initialize for every storage device needed the
installation.

11. At the Name the Computer screen, type ##.domain.com, where ## is the host name, and click
Next.

12. At the Time zone selection screen, select the appropriate time zone, and click Next.
13. Enter the root password in the Root Password and Confirm fields, and click Next.
14. At Partition selection screen, select Replace Existing Linux System(s), and click Next.
15. If a warning appears, click Write changes to disk.
16. At the default installation screen, click Next to begin the installation.
17. At the Congratulations screen, click Reboot.

Configuring networking in the VM

1. Power on the VM, and open the console.
2. Log onto the VM, right-click the desktop, and choose Open Terminal.
3. Type the following command to edit the network configuration settings:

 # vi /etc/sysconfig/network-scripts/ifcfg-eth0

4. Modify the following lines to set the static IP address and netmask, where XXX is the remaining
portion of your IP Address:

BOOTPROTO=static

IPADDR=192.168.XXX.XXX

NETMASK=255.255.255.0

5. Save the file, and exit vi.
6. Repeat steps 3 through 5 for eth1, the 10Gb NIC reserved for testing.
7. Type the following command to modify the remaining network settings:

 # vi /etc/sysconfig/network

8. Modify the following lines to disable IPv6 and set the hostname:

NETWORKING=yes

HOSTNAME=VM1.local.domain

9. Save the file, and exit vi.

Configuring additional tuning options in the VM

1. Log onto the VM using Virtual Machine Manager, or using an ssh client, such as Putty.
2. Modify the following lines to /etc/sysctl.conf:

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.default.arp_filter = 1

3. Save the file, and exit vi.
4. Disable the unnecessary services as above for the KVM host.

A Principled Technologies test report 14

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

5. Disable SELinux as above for the KVM host.

Creating VM Startup Shell scripts to use huge pages

1. Start the libvirt daemon, if necessary, by executing service libvirtd start.
2. Stop all running VMs by executing virsh shutdown VM-name.
3. Type the following to edit each VM’s configuration:

 # virsh edit VM-name

Add the following lines after the <memory> .. </memory> section to each VM’s XML description file:

 <memoryBacking> <hugepages/> </memoryBacking>

4. Save and exit the editor.

Setting up AMQP

Installing AMQP on the host, client and host VMs

1. Log onto the host.
2. Extract the MRG 1.3 software into a directory. If necessary, remount the Red Hat Enterprise Linux 6

Beta media.
3. Using rpm or yum, install the following AMQP packages and dependencies:

 boost-program-options-1.41.0-11.el6.x86_64

 boost-system-1.41.0-11.el6.x86_64

 boost-filesystem-1.41.0-11.el6.x86_64

 boost-date-time-1.41.0-11.el6.x86_64

 boost-thread-1.41.0-11.el6.x86_64

 boost-wave-1.41.0-11.el6.x86_64

 boost-serialization-1.41.0-11.el6.x86_64

 libicu-4.2.1-9.el6.x86_64

 boost-regex-1.41.0-11.el6.x86_64

 boost-graph-1.41.0-11.el6.x86_64

 boost-iostreams-1.41.0-11.el6.x86_64

 boost-python-1.41.0-11.el6.x86_64

 boost-signals-1.41.0-11.el6.x86_64

 boost-test-1.41.0-11.el6.x86_64

 boost-1.41.0-11.el6.x86_64

 boost-devel-1.41.0-11.el6.x86_64

 libuuid-devel-2.17.2-4.el6.x86_64

 qpid-cpp-client-devel-0.7.946106-7.el6.x86_64

 qpid-cpp-client-0.7.946106-7.el6.x86_64

4. Type the following to prevent the Qpid Broker from starting automatically:

 # chkconfig qpidd off

A Principled Technologies test report 15

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

5. Repeat for the client, and each guest.

Creating additional guests on the host server

After installing and configuring the initial guest, we created the additional guest by using virt-clone on

the Red Hat Enterprise Linux platform.

Cloning the guests on Red Hat Enterprise Linux

Run the following command to clone GUEST1 to the area reserved for GUEST2:

virt-clone --original GUEST1 --name GUEST2 --file

/var/lib/libvirt/images/MRG-GUEST2.img –nonsparse

Configuring the additional guests after cloning

Modify the IP addresses in each guest as we discuss in the above section, Configuring networking in the

VM.

Performing the tests

Bare metal procedure

1. On the host, configure the network adapter for standard networking as in the section Setting up the
bridged network adapters for the Red Hat Enterprise Linux KVM for bare metal and SR-IOV tests.

2. Start the AMQP brokers on the host with this script. Note that the brokers 2-4 must listen on a
different TCP/IP port (5673), and have their own HOME directory. Replace NumThreads by 1 for
latency tests, and 7 for throughput tests.

pkill -9 qpidd

sleep 2

mkdir /tmp/qp-{1,2,3,4}

opts="--worker-threads NumThreads --auth=no --mgmt-enable=no --tcp-
 nodelay -d"

cmd= nice -n -20 qpidd $opts”

env HOME=/tmp/qp-1 numactl -C0,2,4,6,8,10 -m0 $cmd

env HOME=/tmp/qp-2 numactl -C12,14,16,18,20,22 –m0 $cmd -p 5673

env HOME=/tmp/qp-3 numactl -C1,3,5,7,9,11 -m1 $cmd -p 5674

env HOME=/tmp/qp-4 numactl -C13,15,17,19,21,23 -m1 $cmd -p 5675

unset opts

3. Log onto the second client.
4. Distribute the client-to-host network interface’s IRQs over the CPUs by running the following script in

which ethX is the interface name.

service irqbalance stop

shift=0

for irq in `awk -F: '/ethX-/ {n++; if(n==1){a=$1}; b=$1} \

END{for (i=a; i <= b; i+=2) {print i}}' /proc/interrupts`; do

A Principled Technologies test report 16

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

 let jrq=”$irq+1”

echo "$shift, $irq, $jrq"

 printf "%X" $((1<<$shift)) > /proc/irq/$irq/smp_affinity

 printf "%X" $((1<<$shift)) > /proc/irq/$jrq/smp_affinity

 let shift+=2

done

5. Log onto the first client and repeat Step 4.
6. Perform the throughput test from the first client by running the following script, where

192.168.XXX.AAA/192.168.XXX.BBB and 192.168.XXX.CCC/192.168.XXX.CCC are the IP addresses for
the host’s network adapters on client 1 and 2, respectively:

for msg in 8 32 64 256 1024;

do echo $msg;

for run in `seq 1 15`;

do echo -e "\nRun $run; size $msg";

opts="--size $msg --count 1000000 --nsubs 1 --npubs 1 --qt 6 -

-bounds-multiplier 102400 --summary --tcp-nodelay"

cmd=”nice -n -20 /usr/bin/qpid-perftest $opts”

pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

sleep 2

numactl -N0 -m0 $cmd -b 192.168.XXX.AAA &

numactl -N1 -m1 $cmd -b 192.168.XXX.BBB –p 5673 &

ssh client-2 \

numactl -N0 -m0 $cmd -b 192.168.XXX.CCC –p 5674 &

ssh client-2 \

numactl -N1 -m1 $cmd -b 192.168.XXX.DDD –p 5675 &

wait

done 2>&1 | tee -a PerfTest.txt

 done

7. Perform the latency test from the first client by running the following script:

for msg in 8 32 64 256 1024;

 do echo $msg;

for run in `seq 1 9`;

do echo -e "\nRun $run; size $msg";

rate1=1000

let rate2="$rate1+1"

let rate3="$rate1+2"

let rate4="$rate1+3"

opts="--size $msg --csv --tcp-nodelay"

cmd=”nice -n -20 /usr/bin/qpid-latency-test $opts”

pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

sleep 2

A Principled Technologies test report 17

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

numactl -N0 -m0 $cmd -b 192.168.XXX.AAA –rate $rate1 &

numactl -N1 -m1 $cmd -b 192.168.XXX.BBB –rate $rate2 –p 5673 &

ssh client-2 \

numactl -N0 -m0 $cmd -b 192.168.XXX.CCC –rate $rate3 –p 5674 &

ssh client-2 \

numactl -N1 -m1 $cmd -b 192.168.XXX.DDD –rate $rate4 –p 5675 &

sleep 60; pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

done 2>&1 | tee -a LatencyTest.txt

 done

Bridged networking procedure

1. On the host, configure the network adapter for bridged networking as in the Setting up the bridged
network for the Red Hat Enterprise Linux KVM section, and reboot.

2. Start the libvirt daemon by typing the following command:

service libvirtd start

3. Start the guests by typing the following commands (replace the guest domain names with their

appropriate values):

virsh start name-of-guest-one

virsh start name-of-guest-two

virsh start name-of-guest-three

virsh start name-of-guest-four

4. Start the AMQP broker on each guest with the following script, where 192.168.XXX.AAA,

192.168.XXX.BBB, etc. are the IP addresses of the guests, and replace NumThreads by 1 for latency
tests, and 6 for throughput tests.

ips=(192.168.XXX.AAA 192.168.XXX.BBB 192.168.XXX.CCC 192.168.XXX.DDD)

opts=”--worker-threads NumThreads –auth=no --mgmt-enable=no -–tcp-
nodelay –d”

for ip in ${ips[*]}; do

ssh $ip pkill -9 qpidd \; sleep 2\; qpidd $opts

done

unset ips

unset opts

5. Pin each guest’s vCPUs to one physical CPU with the following script:

for vpu in `seq 0 5`; do

socket 0

let cpu1=”4*$vcpu”

let cpu2=”$cpu1+2”

socket 1

let cpu3=”$cpu1+1”

let cpu4=”$cpu1+3

A Principled Technologies test report 18

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

echo “$vcpu – Guests 1-4: $cpu1, $cpu2, $cpu3, $cpu4”

virsh vcpupin name-of-guest-one $vcpu $cpu1

virsh vcpupin name-of-guest-two $vcpu $cpu2

virsh vcpupin name-of-guest-three $vcpu $cpu3

virsh vcpupin name-of-guest-four $vcpu $cpu4

done

6. Log onto the second client.
7. Distribute the client-to-host network interface’s IRQs over the CPUs by running the following script in

which ethX is the interface name:

service irqbalance stop

shift=0

for irq in `awk -F: '/ethX-/ {n++; if(n==1){a=$1}; b=$1} \

END{for (i=a; i <= b; i+=2) {print i}}' /proc/interrupts`; do

let jrq=”$irq+1”

echo "$shift, $irq, $jrq"

printf "%X" $((1<<$shift)) > /proc/irq/$irq/smp_affinity

printf "%X" $((1<<$shift)) > /proc/irq/$jrq/smp_affinity

let shift+=2

done

8. Log onto the first client and repeat the Step 7.
9. Perform the throughput test from the first client by running the following script, where

192.168.XXX.AAA/192.168.XXX.BBB and 192.168.XXX.CCC/192.168.XXX.CCC are the IP addresses for
the host’s network adapters on client 1 and 2, respectively:

 for msg in 8 32 64 256 1024;

 do echo $msg;

for run in `seq 1 15`;

do echo -e "\nRun $run; size $msg";

opts="--size $msg --count 1000000 --nsubs 1 --npubs 1 --qt 8 -

-bounds-multiplier 102400 --summary --tcp-nodelay"

cmd=”nice -n -20 /usr/bin/qpid-perftest $opts”

pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

sleep 2

numactl -N0 -m0 $cmd -b 192.168.XXX.AAA &

numactl -N1 -m1 $cmd -b 192.168.XXX.BBB &

ssh client-2 \

numactl -N0 -m0 $cmd -b 192.168.XXX.CCC &

ssh client-2 \

numactl -N1 -m1 $cmd -b 192.168.XXX.DDD &

wait

done 2>&1 | tee -a PerfTest.txt

 done

A Principled Technologies test report 19

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

10. Perform the latency test from the first client by running the following script:

 for msg in 8 32 64 256 1024;

 do echo $msg;

for run in `seq 1 9`;

do echo -e "\nRun $run; size $msg";

rate1=1000

let rate2="$rate1+1"

let rate3="$rate1+2"

let rate4="$rate1+3"

opts="--size $msg --csv --tcp-nodelay"

cmd=”nice -n -20 /usr/bin/qpid-latency-test $opts”

pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

sleep 2

numactl -N0 -m0 $cmd -b 192.168.XXX.AAA –rate $rate1 &

numactl -N1 -m1 $cmd -b 192.168.XXX.BBB –rate $rate2 &

ssh client-2 \

numactl -N0 -m0 $cmd -b 192.168.XXX.CCC –rate $rate3 &

ssh client-2 \

numactl -N1 -m1 $cmd -b 192.168.XXX.DDD –rate $rate4 &

sleep 60; pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

done 2>&1 | tee -a LatencyTest.txt

 done

SR-IOV passthrough procedure

1. On the host, configure the network adapter for standard networking as in the Setting up the bridged
network for the Red Hat Enterprise Linux KVM section.

2. Edit the /etc/grub.conf file to enable SR-IOV in the kernel. Type the following:

 # vi /etc/grub.conf

3. Add the following text to the end of the kernel line:

 intel_iommu=on

4. Save the file, and exit vi.
5. Configure one VF per network adaptor. Create a new driver-initialization file by typing the following:

 # echo “options ixgbe max_vfs=2” > /etc/modprobe.d/sriov.conf

6. Reboot the host.
7. Log onto the host.
8. Start the irqbalance and libvirt daemons by typing the following command:

service libvirtd start

A Principled Technologies test report 20

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

9. Start the guests by typing the following commands (replace the guest domain names with their
appropriate values):

virsh start name-of-guest-one

virsh start name-of-guest-two

virsh start name-of-guest-three

virsh start name-of-guest-four

10. Start the AMQP broker on each guest with the following script, where 192.168.XXX.AAA,

192.168.XXX.BBB, etc. are the IP addresses of the guests. Replace NumThreads by 1 for latency tests,
and 7 for throughput tests.

ips=(192.168.XXX.AAA 192.168.XXX.BBB 192.168.XXX.CCC 192.168.XXX.DDD)

opts=”--worker-threads NumThreads –auth=no --mgmt-enable=no -–tcp-

nodelay –d”

for ip in ${ips[*]}; do

ssh $ip pkill -9 qpidd \; sleep 2\; qpidd $opts

done

unset ips

unset opts

11. Pin each guest’s vCPUs to one physical CPU with the following script:

 for vpu in `seq 0 4`; do

socket 0

let cpu1=”4*$vcpu+4”

let cpu2=”$cpu1+2”

socket 1

let cpu3=”$cpu1+1”

let cpu4=”$cpu1+3

echo “$vcpu – Guests 1-4: $cpu1, $cpu2, $cpu3, $cpu4”

virsh vcpupin name-of-guest-one $vcpu $cpu1

virsh vcpupin name-of-guest-two $vcpu $cpu2

virsh vcpupin name-of-guest-three $vcpu $cpu3

virsh vcpupin name-of-guest-four $vcpu $cpu4

 done

12. Log onto the second client.
13. Distribute the client-to-host network interface’s IRQs over the CPUs by running the following script in

which ethX is the interface name:

service irqbalance stop

shift=0

for irq in `awk -F: '/ethX-/ {n++; if(n==1){a=$1}; b=$1} \

END{for (i=a; i <= b; i+=2) {print i}}' /proc/interrupts`; do

 let jrq=”$irq+1”

echo "$shift, $irq, $jrq"

 printf "%X" $((1<<$shift)) > /proc/irq/$irq/smp_affinity

A Principled Technologies test report 21

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

 printf "%X" $((1<<$shift)) > /proc/irq/$jrq/smp_affinity

 let shift+=2

done

14. Log onto the first client and repeat Step 13.
15. Perform the throughput test from the first client by running the following script, where

192.168.XXX.AAA/192.168.XXX.BBB and 192.168.XXX.CCC/192.168.XXX.CCC are the IP addresses for
the host’s network adapters on client 1 and 2, respectively:

 for msg in 8 32 64 256 1024;

 do echo $msg;

for run in `seq 1 15`;

do echo -e "\nRun $run; size $msg";

opts="--size $msg --count 1000000 --nsubs 1 --npubs 1 --qt 6 -

-bounds-multiplier 102400 --summary --tcp-nodelay"

cmd=”nice -n -20 /usr/bin/qpid-perftest $opts”

pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

sleep 2

numactl -N0 -m0 $cmd -b 192.168.XXX.AAA &

numactl -N1 -m1 $cmd -b 192.168.XXX.BBB &

ssh client-2 \

numactl -N0 -m0 $cmd -b 192.168.XXX.CCC &

ssh client-2 \

numactl -N1 -m1 $cmd -b 192.168.XXX.DDD &

wait

done 2>&1 | tee -a PerfTest.txt

 done

16. Perform the latency test from the first client by running the following script:

 for msg in 8 32 64 256 1024;

 do echo $msg;

for run in `seq 1 9`;

do echo -e "\nRun $run; size $msg";

rate1=1000

let rate2="$rate1+1"

let rate3="$rate1+2"

let rate4="$rate1+3"

opts="--size $msg --csv --tcp-nodelay"

cmd=”nice -n -20 /usr/bin/qpid-latency-test $opts”

pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

sleep 2

numactl -N0 -m0 $cmd -b 192.168.XXX.AAA –rate $rate1 &

numactl -N1 -m1 $cmd -b 192.168.XXX.BBB –rate $rate2 &

ssh client-2 \

numactl -N0 -m0 $cmd -b 192.168.XXX.CCC –rate $rate3 &

A Principled Technologies test report 22

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

ssh client-2 \

numactl -N1 -m1 $cmd -b 192.168.XXX.DDD –rate $rate4 &

sleep 60; pkill -9 qpid- ; ssh client-2 pkill -9 qpid-

done 2>&1 | tee -a LatencyTest.txt

 done

17. At the completion of the SR-IOV tests, shutdown the guests, remove SR-IOV-specific configuration
options, and reboot by typing the following commands:

virsh shutdown name-of-guest-one

virsh shutdown name-of-guest-two

virsh shutdown name-of-guest-three

virsh shutdown name-of-guest-four

rm etc/modprobe.d/sriov.conf

vi /etc/grub.conf # remove intel_iommu=on

shutdown –r now

A Principled Technologies test report 23

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

APPENDIX A – UNIX AND LINUX-BASED SERVER DISCLOSURE

Figure 8 provides detailed information about the servers we used in our testing.

System System under test Client 1 Client 2

Power supplies

Total number 2 1 2

Vendor and model
number

Dell A570P-00 Dell 870P-00 Dell OPT-164

Wattage of each (W) 570 870 870

Cooling fans

Total number 5 5 5

Dimensions (h x w) of
each

2-1/2” x 2-1/2” 2-1/2” x 2-1/2” 2-1/2” x 2-1/2”

Volts 12 12 12

Amps 1.6 1.6 1.5

General

Number of processor
packages

2 2 2

Number of cores per
processor

6 4 4

Number of hardware
threads per core

2 2 2

CPU

Vendor Intel Intel Intel

Name Xeon Xeon Xeon

Model number X5670 E5520 E5540

Stepping 01 04 05

Socket type LGA1366 LGA1366 LGA1366

Core frequency (GHz) 2.93 2.27 2.53

Bus frequency (GT/s) 6.40 5.86 5.86

L1 cache (KB) 32 + 32 (per core) 32 + 32 (per core) 32 + 32 (per core)

L2 cache (KB) 256 (per core) 256 (per core) 256 (per core)

L3 cache (MB) 12 8 8

Platform

Vendor and model
number

Dell PowerEdge R710 Dell PowerEdge R710 Dell PowerEdge R710

Motherboard model
number

PWB9YY69 PWB9YY69 PWBYN967

Motherboard chipset Intel 5520 Intel 5520 Intel 5520

A Principled Technologies test report 24

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

System System under test Client 1 Client 2

BIOS name and version
Dell Incorporated 2.2.2
(9/21/2010) Revision 2.2

Dell Incorporated 2.1.15
(9/13/2010)

Dell Incorporated 2.1.9

BIOS settings

All defaults with the
exception that C1E and C-
States were disabled. SR-
IOV was enabled
depending on the test
being performed.

All defaults with the
exception that C1E and C-
States were disabled.

All defaults with the
exception that C1E and C-
States were disabled.

Memory module(s)

Total RAM in system (GB) 24 48 48

Vendor and model
number

Crucial
CT51272BB1339.36SFD1

Samsung
M393B1K70BH1-CH9

Crucial
CT51272BB1339.36SFD1

Type PC3-10600R PC3-10600R PC3-10600R

Speed (MHz) 1,333 1,066 1,333

Speed running in the
system (MHz)

1,333 1,066 1,333

Timing/Latency (tCL-
tRCD-tRP-tRASmin)

9-9-9-24 7-7-7-20 9-9-9-24

Size (GB) 4 8 4

Number of RAM
module(s)

6 6 12

Chip organization Double-sided Double-sided Double-sided

Rank Dual Dual Dual

Hard disk

Vendor and model
number

Seagate ST9146802SS Seagate ST9146802SS Seagate ST973451SS

Number of disks in
system

2 2 2

Size (GB) 146 146 73

Buffer size (MB) 16 16 16

RPM 10,000 10,000 15,000

Type SAS SAS SAS

Disk controller

Vendor and model
LSI Logic / Symbios Logic
SAS1068E

LSI Logic / Symbios Logic
SAS1068E

Dell PERC 6/i

Controller driver
(module)

2.6.32-71.el6.x86_64 2.6.32-44.1.x86_64 2.6.32-71.el6.x86_64

Controller driver version
0B4D557979D0BC8F39D9
984

0F46530DEF17FB76B7727
67

0B4557979D0BC8F39D998
4

Controller firmware 0.25.47.00-IR 0.25.47.00-IR 1.22.02-0612

A Principled Technologies test report 25

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

System System under test Client 1 Client 2

RAID configuration RAID 1 RAID 1 RAID 1

Operating system

Name
Red Hat Enterprise Linux
6.0

Red Hat Enterprise Linux
6.0

Red Hat Enterprise Linux
6.0

File system ext4 ext4 ext4

Kernel 2.6.32-71.el6.x86_64 2.6.32-44.1.el6.x86_64 2.6.32-71.el6.x86_64

Language English English English

Graphics

Vendor and model
number

Matrox® G200eW Matrox G200eW Matrox G200eW

Ethernet

Vendor and model
number

Intel Corporation Ethernet
Server Adapter X520-SR2

Intel Corporation Ethernet
Server Adapter X520-SR2

Intel Corporation Ethernet
Server Adapter X520-SR1

Type PCI Express PCI Express PCI Express

Driver (Module) 2.6.32-71.el6.x86_64 2.6.32-44.1.el6_64 2.6.32-44.1.el6_64

Driver Version 2.0.62-k2 2.0.62-k2 2.0.62-k2

Optical drive(s)

Vendor and model
number

TEAC DV-28S TEAC DV-28S TEAC DV-28S-VDB

Type DVD ROM DVD ROM DVD ROM

USB ports

Number 4 4 4

Type 2.0 2.0 2.0

Figure 8: Detailed system configuration information for the test-bed servers.

A Principled Technologies test report 26

Hardware-assisted virtualized-I/O messaging analysis on

Red Hat Enterprise Linux 6

ABOUT PRINCIPLED TECHNOLOGIES

Principled Technologies, Inc.
1007 Slater Road, Suite 300
Durham, NC, 27703
www.principledtechnologies.com

We provide industry-leading technology assessment and fact-based marketing
services. We bring to every assignment extensive experience with and expertise
in all aspects of technology testing and analysis, from researching new
technologies, to developing new methodologies, to testing with existing and new
tools.

When the assessment is complete, we know how to present the results to a
broad range of target audiences. We provide our clients with the materials they
need, from market-focused data to use in their own collateral to custom sales
aids, such as test reports, performance assessments, and white papers. Every
document reflects the results of our trusted independent analysis.

We provide customized services that focus on our clients’ individual
requirements. Whether the technology involves hardware, software, Web sites,
or services, we offer the experience, expertise, and tools to help our clients
assess how it will fare against its competition, its performance, its market
readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked together in
technology assessment for over 20 years. As journalists, they published over a
thousand articles on a wide array of technology subjects. They created and led
the Ziff-Davis Benchmark Operation, which developed such industry-standard
benchmarks as Ziff Davis Media’s Winstone and WebBench. They founded and
led eTesting Labs, and after the acquisition of that company by Lionbridge
Technologies were the head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:
PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER, PRINCIPLED
TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND ANALYSIS, THEIR ACCURACY,
COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE. ALL PERSONS OR ENTITIES RELYING ON THE
RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL
HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR
RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH ITS
TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC.’S LIABILITY, INCLUDING FOR DIRECT
DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.’S TESTING. CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES ARE
AS SET FORTH HEREIN.

