

AUGUST 2015

A PRINCIPLED TECHNOLOGIES TEST REPORT
Commissioned by Red Hat Inc.

QUERYING VIRTUALIZED DATABASES WITH RED HAT JBOSS DATA
VIRTUALIZATION

Enterprises today struggle with data challenges that include scattered data

across multiple heterogeneous sources, data that is incomplete and hard to understand,

and new or changing data sources that must be integrated or updated quickly. Data

virtualization addresses these challenges by providing standards-based connectivity that

can hide complexities of underlying data sources. In addition, data virtualization can

allow your business to access data from multiple sources without migrating or copying

any data, potentially improving accuracy and agility while reducing costs. Data

virtualization can enable enterprises to access data through tools already in house,

making the data consumable by any standards-based application.

When introducing data virtualization into your architecture, questions may

arise. In what scenarios is this technology viable? How well can it perform? Does this

technology offer the flexibility to work with existing tools and diverse data sources as

well as the agility to incorporate new data sources?

In the Principled Technologies datacenter, we wanted to understand the use

and role of data virtualization as it can apply to enterprise databases. We looked at what

kinds of use cases for which an organization could effectively use Red Hat JBoss Data

Virtualization (JDV) and then measured its querying performance in a number of

environments and situations. We found that in our use cases, including querying a single

data source with JDV, a federated set of data sources via JDV, in both transactional and

analytical scenarios, JDV performed favorably and scaled, in some cases performing

better than querying the native data sources.

DRAFT

A Principled Technologies test report 2

Querying virtualized databases with
Red Hat JBoss Data Virtualization

POTENTIAL JBOSS DATA VIRTUALIZATION USE CASES FOR YOUR
BUSINESS

Red Hat JDV can add value to your business. We chose four potential use cases

that cross a range of workloads common in large organizations and use a varying

number of data sources. We used four relational database management systems

(RDBMS), which we refer to as Databases A, B, C, and D. Our testing measured query

latency and query throughput to demonstrate the advantage of using JDV. In addition,

we closely monitored resource consumption stability of the systems. For more

information on the RDBMS we used for this testing, see Appendix A.

Use case 1 – Querying one database instance: Directly vs. pushdown using JDV
In this use case, a user executes a set of SQL queries to the relational database

management system (RDBMS) using Java database connectivity (JDBC) technology. Our

testing compared querying directly from a client machine to the RDBMS using the

vendor-specific JDBC and querying against JDV using the JDV JDBC driver (see Figure 1).

For this use case, we used Database A. For more information on JDV and the queries we

used, see Appendix A and Appendix B.

Figure 1: JDV sits between the user and the data sources, and uses SQL queries and JDBC to interrogate the data source.

DRAFT

A Principled Technologies test report 3

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Use case 2 – Querying a virtual database for an analytical workload
In this use case, a user executes the same set of queries against JDV; however,

the data comes from four RDBMS (Databases A, B, C, and D) rather than one (see Figure

2). A JDV “virtual database” presents a unified, integrated database that represents the

complete data set.

This use case simulates a typical Business Intelligence (BI) analytical use case for

enterprises, such as calculating sales trends for a particular product across all customers

from multiple databases over the course of a month. These queries can take a long time

because they read large amounts of data from source databases and then perform data

integration in the JDV layer.

Figure 2: Querying against JDV for data from four RDBMS.

DRAFT

A Principled Technologies test report 4

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Use case 3 – Scaling the queries of an analytical workload
Similar to use case 2, this use case also features an analytical load but varies the

number of concurrent users to simulate small, medium, and large teams of BI analysts

querying the data sources simultaneously for analytic queries that return large results

(see Figure 3). This scenario observes the stability and performance of the virtualized-

database system.

Figure 3: Multi-user querying against JDV for data from four RDBMS.

DRAFT

A Principled Technologies test report 5

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Use case 4 – Querying a virtual database for an online transaction processing (OLTP)
workload

This scenario switches from BI use cases to transactional processing for many

simultaneous users. The data is distributed across databases exactly as in use case 3,

and JDV presents the same “virtual database” to the users. However, the query

executed represents an online transaction processing (OLTP) query.

OLTP queries are typically executed in operational datastores, such as an online

order system or customer database. Queries in this scenario need to have faster

response times and to return smaller amounts of data compared to use case 3. An

example is looking up a single customer or the customer’s order history. The scenario

runs a single query that returns a small result with high levels of concurrent users.

ADVANTAGES OF USING VIRTUAL DATABASES WITH RED HAT JDV
Information about a single entity, such as a customer or item, can exist in many

different parts of your business. For example, manufacturing companies may have

separate databases for manufacturing, sales, research and development, and shipping.

When your business needs to integrate data from these multiple sources, the process

can be cumbersome—having different kinds of data can complicate data analysis and

database development efforts.

Merging data sets may sound like a good solution to getting all your data in one

place for querying, but this can be expensive, require costly application changes and

many hours from IT, and increase the potential for human error. In addition, DBMS

semantics and security capabilities vary, which further complicates consolidation efforts,

and programming (for queries, etc.) means additional time and costs. Ultimately, if your

databases are working well, you may not want to disrupt your database infrastructure.

Using data integration software such as JBoss Data Virtualization (JDV) with

multiple data sources can offer the benefits of data consistency and access while

helping your business avoid the potential issues involved with merging datasets. With

JDV, your business can use a common interface to query data residing in multiple data

sources without having to integrate datasets. Whatever the reason for having multiple

data sources, unifying them with JDV can make accessing data easier, with minimal

interruption for your users, while potentially easing the labor burden on your IT,

database administrators, and database developers.1

1 For more information on Red Hat JDV, see Appendix A.

DRAFT

A Principled Technologies test report 6

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Test environment
Hardware

Figure 4 shows our specifications and roles for the servers we used.

Model Processors Memory (GB) Storage Functional role

Lenovo ThinkServer RD550
Intel Xeon
E5-2699 v3 (2)

128
HDDs;
1.1 TB total

JBoss Data Virtualization
6.1.0 host

Lenovo ThinkServer RD550
Intel Xeon
E5-2699 v3 (2)

128
SSDs, HDDs;
1.8 TB total

Database A server,
hosting 1 TB data source

Lenovo ThinkServer RD550
Intel Xeon
E5-2698 v3 (2)

128
SSDs, HDDs;
1.8 TB total

Database B server,
hosting 1 TB data source

Lenovo ThinkServer RD540
Intel Xeon
E5-2690 v2 (2)

128
HDDs;
1.6 TB total

Database C server,
hosting 1 TB data source

Lenovo ThinkServer RD540
Intel Xeon
E5-2690 v2 (2)

128
HDDs;
1.6 TB total

Database D server,
hosting 1 TB data source

Figure 4: Our test servers and functional roles. See Appendix A for complete list.

Operating systems

 Red Hat Enterprise Linux 7 on the JDV, database, and test-harness hosts

 Microsoft Windows 2012 R2

Software versions

 JBoss Data Virtualization version 6.1

 Apache JMeter v2.13

 See Appendix A for RDBMS details

Network

 All machines are configured with 10GbE LAN.

Source database(s) setup

The TPC Benchmark H (TPC-H) is a decision-support benchmark that consists of

a suite of business oriented ad-hoc queries and concurrent data modifications. We used

TPC-H-like schema and data for performance testing and loaded each database

(Databases A, B, C, and D) with 1 TB of TPC-H-like data. The 1 TB of data represents

about 150 million customers, with over 600 million order records, and 6 billion order

line items. Our test queries were also TPC-H-like and labeled A through H.2

Physical architecture

The JDV environment consisted of one JDV server in front of four distinct

database servers. For the final federated-data scenario, we completed queries with a

mix of numbers of concurrent users. Figure 5 shows the flow of queries in the physical

architecture of our test solution.

2 For detailed information on the test queries, see Appendix B.

http://www.tpc.org/tpch/

DRAFT

A Principled Technologies test report 7

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Figure 5: Architecture of our test solution.

What we found
Use Case 1 - Direct to Database A vs. pushdown to Database A using JDV

To establish a baseline set of results to compare against the results from using

JDV pushdown, we configured the vendor-specific Database A JDBC driver directly to

Database A and executed the queries with Apache JMeter.

Then, instead of directly accessing Database A, we set up the JDV server

between the database and the client. This allowed the client to interact with the JDV

system, which then interacted with the database. We configured JDV to perform the

data federation, where the results returned to the client from JDV in the same form as

when they returned from Database A. Figure 6 shows our baseline and JDV pushdown

response times for each query. For the number of rows returned per query, see

Appendix B.

DRAFT

A Principled Technologies test report 8

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Query
Single-users response times (seconds)

Direct query to Database A JDV pushdown to one database (Database A)

A 0.002 0.016

B 58.758 56.012

C 0.285 0.165

D 0.057 0.074

E 4.156 4.803

F 79.504 78.938

Total 142.762 140.008

Figure 6: Response times when directly querying Database A (baseline) and when querying it with JDV pushdown.

Comments on use case 1
We configured JDV as a simplistic virtualization layer between the user and the

Database A database. Testing in this way can demonstrate the additional overhead

introduced by JDV in terms of latency.

Total response time after inserting JDV between the client and the Database A

database was 2 seconds less than direct queries through the vendor-specific JDBC from

Database A. Though we can not conclusively determine this was the case, one possible

explanation for the increase in performance could be the multithreaded result

processing and optimization techniques used automatically in JDV when working with

source databases.

Use Case 2 - Virtual database analytical testing

When performing queries to a federated virtual database with JDV, database

administrators do not face the challenges of migrating data, user-defined functions, or

stored procedures. Improper migration or damage from the migration can introduce

significant errors. In addition, keeping data and user-defined functions in place can

potentially save database administrators time and labor.

To demonstrate query execution when choosing to federate your data sources

and query JDV directly, we configured JDV with a virtual database that joined together

data from Databases A, B, C, and D databases in such a manner that would allow us to

perform the same queries. Using JMeter, we executed the six queries of varying

complexity, data sources, and result set sizes for one user on a single client connection.

Query B used JDV data pushdown to Database A. Figure 7 shows (1) Our JDV pushdown

to Database A response times for each query from the previous scenario, and (2)

response times for each query to the federated data in the virtual database of JDV.

DRAFT

A Principled Technologies test report 9

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Query

Single-user response times (seconds)

JDV with federated virtual database from four
different RDBMS

JDV pushdown to one database (Database A)

A 0.081 0.016

B 12.708 56.012

C 0.398 0.165

D 0.208 0.074

E 32.359 4.803

F 8.923 78.938

Total 54.677 140.008

Figure 7: Response times for directly querying the federated virtual database of JDV with data from up to four different RDBS and
JDV pushdown to one database, Database A.

Comments on use case 2
The goal of this test was to demonstrate how JDV could handle queries of

varying complexity (for example, query results with many rows or many columns).The

test offered the chance to check correctness of data, to measure latency introduced by

JDV performing joins and aggregations, and to measure query response times for a

single user.

Compared to the baseline response times, some queries had shorter response

times with JDV in the architecture and others had longer response times. The total

query response time was 61.7 percent better than the baseline total response time.

For queries B and F, response times were 78.4 and 88.8 percent better

respectively when using JDV to query across multiple data sources simultaneously

compared to baseline results.

One possible explanation for the reduction in response time in queries B and F

could be that JDV pulled only relevant data into the JDV engine in a multithreaded

fashion. The combination of concurrently streamed data and efficient join, sort, and

aggregate algorithms in JDV could have allowed for faster response time. In addition,

the JDV optimizer could have pushed down relevant data to the sources, which would

mean that more processing of the query occurred at the source than at the JDV engine.

Note that we can not state conclusively that this was the reason.

With a relatively small number of rows returned, introducing JDV into the

solution added latency and increased response time for query A. As the number of rows

returned increased, the difference in time greatly diminished or improved when JDV

was introduced in the architecture. For queries C, D, and E, which had more returned

rows than query A, combining the data sources with JDV also increased response times.

This increase for some queries was due to the amount of query complexity and to the

amount of data that needed to be retrieved from the sources into the JDV engine in real

time prior to doing further query processing, such as joining the data from different

databases, sorting (ORDER BY), and aggregating (GROUP BY) results.

DRAFT

A Principled Technologies test report 10

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Use Case 3 - Scaling the queries to a virtual database analytical workload

Using JMeter, we executed query G across four databases (Databases A, B, C,

and D) with a varying number of concurrent users. Query G returned a large amount of

data (20,166,673 bytes in 92,520 rows) as expected in a typical analytic workload. For

this type of analytical workload, we did not expect to have more than 20 analytic users

querying JDV simultaneously, so we varied the concurrent clients from one to 20

simultaneous users to simulate small, medium, and large analytics teams. Figure 8

shows the total query times when running the test continuously for 20 minutes.

Figure 8: Analytical workload
query times for an increasing
number of concurrent users.
Note: Line is used to guide the
eye.

0

20

40

60

80

100

0 5 10 15 20 25Q
u

er
y

ti
m

e
p

er
 u

se
r

(s
ec

o
n

d
s)

Number of concurrent users

Analytical workload - Response time by user

Comments on use case 3

As the number of users increased, latency increased slightly but the overall

system resource consumption in terms of CPU load and memory consumption of the

Java VM (JVM) stayed relatively proportional to the load. Increasing the processing

batch size improved the processing of the query. With additional memory overhead,

however, we did not observe any disk access by JDV that indicated the buffering of

results to disk. JDV can effectively handle larger loads without severely degrading the

system performance.

Use Case 4 - Scaling the queries to a virtual database OLTP workload

Using JMeter, we executed query H to the same federated virtual database in

JDV using data from Databases A, B, C, and D. Query H performed a four-way join as did

Query G above, but the result set size featured only a small number of rows. This small

result set simulated transactional workloads with high volumes of concurrent users who

would each execute small transactions, such as website usage. Figure 9 shows the

number of concurrent users executing query H and corresponding throughput (queries

per second). Note that each submitted query was unique, so result caching did not skew

the results.

DRAFT

A Principled Technologies test report 11

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Figure 9: Throughput (queries per
second) for an increasing number
of concurrent users. Note: Line is
used to guide the eye.

0

150

300

450

600

0 200 400 600 800 1,000

O
rd

e
rs

 p
e

r
se

co
n

d

Number of concurrent users

Throughput (queries per second) by number of users

We performed this test with a new configuration of JDV that was appropriate

for this OLTP query. Namely, we tested the OLTP performance four identical instances of

JDV on the same server sharing the same amount of resources—each Java VM had 16

GB of RAM and 64 connections to each source database. We used the same set of OLTP

queries for each JDV configuration.

Comments on use case 4
For tests with the four JDV instances, JVM configurations, such as large memory

and thread management, helped create this improvement.3

Performance with four JDV instances peaked around 400 users, decreased as

the load increased, and then stabilized to a constant rate. During this process, the CPU

utilization was moderate across all machines (JDV and databases). I/O operations, JVM

garbage collection, and source response time limited performance as CPU was not

constrained with load.

To investigate further, we measured each source database’s query times over

the period of the test run and calculated the statistics of response times. We found that

one source in particular was degrading in performance as load increased, and that

limited overall throughput delivered through JDV.

The performance of JDV is therefore dependent upon the particulars of the

integration scenario and the sources involved. If the sources are constrained, then

adding JDV without additional caching techniques may not improve performance by

itself. If you have a constrained source, then consider materialization and other caching

strategies in JDV to improve system performance.4

3 For more information, see Appendix C.
4 To learn more about caching strategy, see JDV product documentation at https://access.redhat.com/documentation/en-
US/Red_Hat_JBoss_Data_Virtualization/6.1/html/Development_Guide_Volume_5_Caching_Guide/index.html.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Virtualization/6.1/html/Development_Guide_Volume_5_Caching_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Virtualization/6.1/html/Development_Guide_Volume_5_Caching_Guide/index.html

DRAFT

A Principled Technologies test report 12

Querying virtualized databases with
Red Hat JBoss Data Virtualization

CONCLUSION
Without disrupting existing data and operations, your business can effectively

use Red Hat JDV to query data in many environments, including analytic and OLTP

workloads, both using multiple databases. Figure 10 summarizes our findings for the

four use cases.

Use case Description Comments

Use case
1

Querying one Database
A instance: Directly vs.
pushdown using JDV

Queries using JDV produced response times with no measurable overhead
compared to direct queries to the database without JDV.5

Use case
2

Querying a virtual
database for an
analytical workload

The queries to federated data from up to four data sources ran 61.7 percent
faster than the baseline response times to a single data source. One possible
explanation is that JDV acts as a logical data warehouse, accessing data from
all sources in realtime, compared to the data residing in a single, physical data
warehouse. We can not state conclusively that this was the reason.

Use case
3

Scaling the queries of
an analytical workload

A 2X workload increase resulted in less than a 10 percent increase in response
time.6 As the number of users increased, latency increased slightly but the
overall system resource consumption in terms of CPU load and memory
consumption of the JVM stayed relatively proportional to the load. JDV
effectively handled larger loads without severely degrading the system
performance.

Use case
4

Querying a virtual
database for an online
transaction processing
(OLTP) workload

There was a 272 percent increase in throughput when the number of
concurrent users increased by 400 percent of the initial workload. Following
this initial steady increase in performance as more concurrent users were
added, the performance hit the constraints of the slowest data source. We
then observed a steady 30 percent decline in throughput as we increased the
number of concurrent users. Note that the JDV server did not show any sign of
fatigue or stress.

Figure 10: Our findings for the four use cases.

The advantages for data virtualization abound for business agility by providing

real time information across multiple, heterogeneous data sources without moving or

copying any data, allowing businesses to respond quickly and accurately while reducing

cost and data sprawl. Enterprises can use JDV without disrupting their current data and

operations infrastructure to achieve their data integration and data abstraction goals.

With an understanding of the use cases, a properly architected JDV server and set of

virtual databases could meet performance expectations and in some cases, possibly

improve performance.

5 Actual results showed that queries through JDV performed 2 percent faster than queries directly to the data source. One possible
explanation for the increase in performance could be the multithreaded result processing and optimization techniques used
automatically in JDV when working with source databases. Note that we can not state conclusively that this was the reason.
6 This number was calculated by looking at the increase from 5 to 10 concurrent users (2X) and the response increase of less than 10
percent. For each additional increment of users (10 to 15, and 15 to 20) the increase in response time remained around 10 percent.

DRAFT

A Principled Technologies test report 13

Querying virtualized databases with
Red Hat JBoss Data Virtualization

APPENDIX A – THE SOFTWARE WE USED

Database software
 Database A, latest publicly available version: We can not publish the name of Database A due to EULA

restrictions.

 Database B: PostgreSQL 9.2.10

 Database C: Microsoft SQL Server 2012

 Database D: MySQL Database 5.6.23

JBoss Data Virtualization
According to JBoss.org, “JBoss Data Virtualization is a data integration solution that sits in front of multiple data

sources and allows them to be treated as a single source, delivering the right data, in the required form, at the right time

to any application and/or user.”7 For more information, see www.redhat.com/en/technologies/jboss-middleware/data-

virtualization and www.jboss.org/products/datavirt/overview/.

The benchmark testing tools: Apache JMeter and the Java OLTP query generators
JMeter is an open-source benchmark tool for testing web sites, web applications, and databases. When used to

test databases, the benchmark queries the data source via a JDBC connector. For more information about JMeter, visit

jmeter.apache.org.

To compile the JDBCClient application, we performed the following operation:

javac -classpath /root/jm/client/teiid-8.7.1.redhat-8-jdbc.jar JDBCClient.java

For this test, we ran this script (run.sh) as

sh run.sh 12 25 600000 # 12 instances of 25 threads each for 10 minutes

The file “run.sh”:

JAVA_OPTS="-d64 -server -Xmx2G -Xmn1G"

JAVA_OPTS="$JAVA_OPTS -XX:+UseConcMarkSweepGC -XX:+UseParNewGC"

SQL="select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address,

 s_phone, s_comment, c_name, o_orderdate, r_name

from

 /*+ makedep */ dbC.tpch.dbo.part, /*+ makedep */

 dbC.tpch.dbo.supplier, /*+ makedep */ dbC.tpch.dbo.partsupp,

 dbD.NATION, dbD.REGION, dbB.customer, /*+ makedep */

 dbA.orders, /*+ makedep */ dbA.lineitem

where

 (p_partkey = ps_partkey) and (s_suppkey = ps_suppkey) and (c_custkey =

 O_CUSTKEY) and (O_ORDERKEY = L_ORDERKEY) and (L_PARTKEY = p_partkey)

 and (L_SUPPKEY = s_suppkey) and (s_nationkey = N_NATIONKEY) and

 (N_REGIONKEY = R_REGIONKEY) and (c_custkey = ?)"

date

for i in $(seq 1 $1); do

 java $JAVA_OPTS -classpath /root/jm/client/teiid-8.7.1.redhat-8-jdbc.jar:. \

 -Dusername=OurUser -Dpassword=OurPassword JDBCClient "$2" "$3" "$SQL" &

done

wait

date

7 Overview of Red Hat JBoss Data Virtualization www.jboss.org/products/datavirt/overview/

http://www.redhat.com/en/technologies/jboss-middleware/data-virtualization
http://www.redhat.com/en/technologies/jboss-middleware/data-virtualization
http://www.jboss.org/products/datavirt/overview/
http://jmeter.apache.org/
http://www.jboss.org/products/datavirt/overview/

DRAFT

A Principled Technologies test report 14

Querying virtualized databases with
Red Hat JBoss Data Virtualization

APPENDIX B – THE DATABASE QUERIES WE USED

Single-user DSS queries (A through F); multi-user analytic query G; multi-user OLTP query H
We generated the data using the TPC-H-like schema and its data-generation program. Red Hat Engineering

adapted several of the TPC-H-like queries for these tests to demonstrate the capabilities of JDV. We considered eight

total queries in three categories: six single-user DSS queries, one multi-user analytic query, and one multi-user OLTP

query. Figures 11 through 14 list the queries and data sources used for each.

Query SQL Description Data source

A
SELECT *

FROM customer

WHERE c_custkey <= 100
Single data source Database A

B

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,

 s_address, s_phone, s_comment, c_name, o_orderdate

FROM part, supplier, partsupp, nation, region,

 customer, orders, lineitem

WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey

 AND c_custkey = o_custkey AND o_orderkey = l_orderkey

 AND l_partkey = p_partkey AND l_suppkey = s_suppkey

 AND p_size = 22 AND p_type LIKE '%TIN'

 AND s_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = 'AFRICA' AND ps_supplycost < 20

Federated inner join;
similar to TPC-H query
Q2

Database A

C

SELECT l_orderkey,

 sum(l_extendedprice * (1 - l_discount)) AS revenue,

 o_orderdate, o_shippriority

FROM customer, orders, lineitem

WHERE c_mktsegment = 'HOUSEHOLD' AND c_custkey =

o_custkey

 AND l_orderkey = o_orderkey

 AND o_orderdate < '1995-03-01'

 AND l_shipdate > '1995-03-01' AND c_custkey < 10000

GROUP BY l_orderkey, o_orderdate, o_shippriority

ORDER BY revenue DESC, o_orderdate

Federated inner join;
similar to TPC-H query
Q2

Database A

D

SELECT c_custkey, count(o_orderkey) AS c_count

FROM customer

LEFT OUTER JOIN orders ON c_custkey = o_custkey

WHERE o_comment NOT LIKE '%special%accounts%'

 AND c_custkey < 10000

GROUP BY c_custkey

Federated left outer
join; similar to the
subquery in TPC-H
query Q13

Database A

E

SELECT o_orderkey, o_orderdate, o_clerk,

 c_custkey, c_name

FROM orders

JOIN customer ON c_custkey = o_custkey

WHERE c_nationkey = 1 AND c_acctbal > 5

 AND c_acctbal < 200

 AND o_orderdate < {ts '1998-01-01 00:00:00' }

Federated dependent
join

Database A

F

SELECT c_custkey, c_name, c_phone

FROM customer

WHERE c_nationkey = 1 AND c_acctbal > 5

 AND c_acctbal < 200

UNION

SELECT c_custkey, c_name, c_phone

FROM CUSTOMER

WHERE c_nationkey = 2 AND c_acctbal > 5

 AND c_acctbal < 200

Federated union Database A

Figure 11: Six single-user DSS queries of varying complexity , using only the Database A for the data source

DRAFT

A Principled Technologies test report 15

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Query SQL Description
Data
sources

A
SELECT *

FROM dbB.customer

WHERE c_custkey <= 100
Single data source Database B

B

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,

 s_address, s_phone, s_comment, c_name, o_orderdate

FROM dbC.tpch.dbo.part, dbC.tpch.dbo.supplier,

 dbC.tpch.dbo.partsupp, dbD.nation, dbD.region,

 dbB.customer, dbA.orders, dbA.lineitem

WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey

 AND c_custkey = o_custkey AND o_orderkey = l_orderkey

 AND l_partkey = p_partkey AND l_suppkey = s_suppkey

 AND p_size = 22 AND p_type LIKE '%TIN'

 AND s_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = 'AFRICA' AND ps_supplycost < 20

Federated inner join;
similar to TPC-H query
Q2

Databases
A, B, C, and
D

C

SELECT l_orderkey,

 sum(l_extendedprice * (1 - l_discount)) AS revenue,

 o_orderdate, o_shippriority

FROM dbB.customer, dbA.orders, dbA.lineitem

WHERE c_mktsegment = 'HOUSEHOLD' AND c_custkey =

o_custkey

 AND l_orderkey = o_orderkey

 AND o_orderdate < '1995-03-01'

 AND l_shipdate > '1995-03-01' AND c_custkey < 10000

GROUP BY l_orderkey, o_orderdate, o_shippriority

ORDER BY revenue DESC, o_orderdate

Federated inner join;
similar to TPC-H query
Q2

Databases A
and B

D

SELECT c_custkey, count(o_orderkey) AS c_count

FROM dbB.customer

LEFT OUTER JOIN dbA.orders ON c_custkey = o_custkey

WHERE o_comment NOT LIKE '%special%accounts%'

 AND c_custkey < 10000

GROUP BY c_custkey

Federated left outer
join; similar to the
subquery in TPC-H
query Q13

Databases A
and B

E

SELECT o_orderkey, o_orderdate, o_clerk,

 c_custkey, c_name

FROM dbA.orders

JOIN dbB.customer ON c_custkey = o_custkey

WHERE c_nationkey = 1 AND c_acctbal > 5

 AND c_acctbal < 200

 AND o_orderdate < {ts '1998-01-01 00:00:00' }

Federated dependent
join

Databases A
and B

F

SELECT c_custkey, c_name, c_phone

FROM dbB.customer

WHERE c_nationkey = 1 AND c_acctbal > 5

 AND c_acctbal < 200

UNION

SELECT c_custkey, c_name, c_phone

FROM dbD.CUSTOMER

WHERE c_nationkey = 2 AND c_acctbal > 5

 AND c_acctbal < 200

Federated union
Databases B
and D

Figure 12: The same six single-user DSS queries as in Figure 12, but updated to use a fully federated virtualize JDV database (four
data sources).

DRAFT

A Principled Technologies test report 16

Querying virtualized databases with
Red Hat JBoss Data Virtualization

Query SQL Description
Data
sources

G

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,

 s_address, s_phone, s_comment, c_name, o_orderdate

FROM dbC.tpch.dbo.part, dbC.tpch.dbo.supplier,

 dbC.tpch.dbo.partsupp, dbD.nation, dbD.region,

 dbB.customer, dbA.orders, dbA.lineitem

WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey

 AND c_custkey = o_custkey AND o_orderkey = l_orderkey

 AND l_partkey = p_partkey AND l_suppkey = s_suppkey

 AND p_size = 22 AND p_type LIKE '%TIN'

 AND s_nationkey = n_nationkey

 AND n_regionkey = r_regionkey

 AND r_name = 'AFRICA' AND ps_supplycost < 20

Federated inner join;
identical to Query B

Databases
A, B, C, and
D

Figure 13: One multi-user analytic query to a fully federated virtualize JDV database (four data sources)..

Query SQL Description
Data
sources

H

SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,

 s_address, s_phone, s_comment, c_name, o_orderdate,

 r_name

FROM

 dbC.tpch.dbo.part, dbC.tpch.dbo.supplier,

 dbC.tpch.dbo.partsupp, dbD.nation, dbD.region,

 dbB.customer, dbA.orders, dbA.lineitem

WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey

 AND c_custkey = o_custey AND o_orderkey = l_orderkey

 AND l_partke = p_partkey AND l_suppkey = s_suppkey

 AND s_nationkey = n_nation

 AND n_regionkey = r_regionkey

 AND (c_custkey = ${ __Random(1, 150000000) })

Federated inner join;
adapted from Query B;
note that the query
driver generates a
random customer
identifier (to match
c_custkey) for each
query.

Databases
A, B, C, and
D

Figure 14: One multi-user OLTP query to a fully federated virtualize JDV database (four data sources).

Figure 15 shows the number of rows returned for each of the queries in Use case 1 and 2.

Query
Rows returned

(Direct and JDV pushdown)

A 100

B 92,520

C 754

D 6,666

E 970,839

F 213,211

Total 1,284,097

Figure 15: Row counts returned for each of the queries in Use case 1 and 2.

DRAFT

A Principled Technologies test report 17

Querying virtualized databases with
Red Hat JBoss Data Virtualization

APPENDIX C – SYSTEM CONFIGURATION INFORMATION
Figures 16 through 18 provide detailed configuration information for the test systems.

System Database A server Database B server

Power supplies

Total number 2 2

Vendor and model number DELTA DPS-750AB-21 A DELTA DPS-750AB-21 A

Wattage of each (W) 750 750

Cooling fans

Total number 8 8

Vendor and model number San Ace 80 9G0812P1G09 San Ace 80 9G0812P1G09

Dimensions (h x w) of each 3-1/4” x 1-1/2” 3-1/4” x 1-1/2”

Volts 12 v 12 v

Amps 1.4 amps 1.4 amps

General

Number of processor packages 2 2

Number of cores per processor 18 16

Number of hardware threads per core 2 2

System power management policy Balanced Balanced

CPU

Vendor Intel Intel

Name Xeon Xeon

Model number E5-2699 v3 E5-2698 v3

Stepping C1 C1

Socket type FCLGA2011-3 FCLGA2011-3

Core frequency (GHz) 2.30 2.30

Bus frequency 9.6 GT/s 9.6 GT/s

L1 cache 32 KB + 32 KB (per core) 32 KB + 32 KB (per core)

L2 cache 256 KB (per core) 256 KB (per core)

L3 cache 45 MB (shared) 40 MB (shared)

Platform

Vendor and model number Lenovo ThinkServer RD550 Lenovo ThinkServer RD550

Motherboard model number 70CX001YUX 70CW0003UX

BIOS name and version PB1TS110(V1.10.0) PB1TS110(V1.10.0)

BIOS settings Default Default

Memory module(s)

Total RAM in system (GB) 128 128

Vendor and model number SK Hynix HMA42GR7MFR4N-TF SK Hynix HMA42GR7MFR4N-TF

Type PC4-2133 PC4-2133

Speed (MHz) 2,133 2,133

Speed running in the system (MHz) 2,133 2,133

Timing/Latency (tCL-tRCD-tRP-
tRASmin)

15-15-15-33 15-15-15-33

Size (GB) 16 16

Number of RAM module(s) 8 8

DRAFT

A Principled Technologies test report 18

Querying virtualized databases with
Red Hat JBoss Data Virtualization

System Database A server Database B server

Chip organization Double-sided Double-sided

Rank Dual Dual

Hard disk

Vendor and model number Seagate ST600MM0006 Seagate ST600MM0006

Number of disks in system 6 6

Size (GB) 600 600

Buffer size (MB) 64 64

RPM 10K 10K

Type SAS SAS

Hard disk

Vendor and model number Seagate ST400FM0053 Seagate ST400FM0053

Number of disks in system 2 2

Size (GB) 400 400

Buffer size (MB) N/A N/A

RPM SSD SSD

Type SAS SAS

Disk controller

Vendor and model Lenovo ThinkServer RAID 720i Lenovo ThinkServer RAID 720i

Controller cache 1 GB 1 GB

Controller driver
LSI MegaRAID SAS Driver
06.805.06.01-rc1

LSI MegaRAID SAS Driver
06.805.06.01-rc1

Operating system

Name Red Hat Enterprise Linux Server 7.1 Red Hat Enterprise Linux Server 7.1

Kernel 3.10.0-229.el7.x86_64 3.10.0-229.el7.x86_64

File system xfs xfs

Language English English

Ethernet

Vendor and model number Intel 82599ES 10-Gigabit Ethernet Intel 82599ES 10-Gigabit Ethernet

Type PCIe PCIe

Driver
Intel 10 Gigabit PCI Express Network
Driver, 4.0.1-k-rh7.1

Intel 10 Gigabit PCI Express Network
Driver, 4.0.1-k-rh7.1

USB ports

Number 6 6

Type 2.0 2.0

Figure 16: Configuration information for Database A & B servers.

DRAFT

A Principled Technologies test report 19

Querying virtualized databases with
Red Hat JBoss Data Virtualization

System Database C server Database D server

Power supplies

Total number 2 2

Vendor and model number DELTA DPS-750AB-21 A DELTA DPS-750AB-21 A

Wattage of each (W) 800 800

Cooling fans

Total number 8 8

Vendor and model number San Ace 80 9G0812P1G09 San Ace 80 9G0812P1G09

Dimensions (h x w) of each 3-1/4” x 1-1/2” 3-1/4” x 1-1/2”

Volts 12 v 12 v

Amps 1.4 amps 1.4 amps

General

Number of processor packages 2 2

Number of cores per processor 10 10

Number of hardware threads per core 2 2

System power management policy Balanced Balanced

CPU

Vendor Intel Intel

Name Xeon Xeon

Model number E5-2690 v2 E5-2690 v2

Stepping M1 M1

Socket type FCLGA2011 FCLGA2011

Core frequency (GHz) 3.00 3.00

Bus frequency 8 GT/s 8 GT/s

L1 cache 32 KB + 32 KB (per core) 32 KB + 32 KB (per core)

L2 cache 256 KB (per core) 256 KB (per core)

L3 cache 25 MB (shared) 25 MB (shared)

Platform

Vendor and model number Lenovo ThinkServer RD540 Lenovo ThinkServer RD540

BIOS name and version A1TS80A A1TS80A

BIOS settings Default Default

Memory module(s)

Total RAM in system (GB) 128 128

Vendor and model number SK Hynix HMT42GR7AFR4C-RD SK Hynix HMT42GR7AFR4C-RD

Type PC3-14900 PC3-14900

Speed (MHz) 1,866 1,866

Speed running in the system (MHz) 1,866 1,866

Timing/Latency (tCL-tRCD-tRP-
tRASmin)

13-13-13-34 13-13-13-34

Size (GB) 16 16

Number of RAM module(s) 8 8

Chip organization Double-sided Double-sided

Rank Dual Dual

DRAFT

A Principled Technologies test report 20

Querying virtualized databases with
Red Hat JBoss Data Virtualization

System Database C server Database D server

Hard disk

Vendor and model number Seagate ST3450857SS Seagate ST300MM0006

Number of disks in system 4 2

Size (GB) 450 300

Buffer size (MB) 16 64

RPM 15K 10K

Type SAS SAS

Hard disk

Vendor and model number n/a Seagate ST900MM0006

Number of disks in system n/a 4

Size (GB) n/a 900

Buffer size (MB) n/a 64

RPM n/a 10K

Type n/a SAS

Hard disk

Vendor and model number n/a Intel SSD DC S3700

Number of disks in system n/a 2

Size (GB) n/a 400

Buffer size (MB) n/a n/a

RPM n/a SSD

Type n/a SATA

Disk controller

Vendor and model LSI MegaRAID SAS 9270-8i LSI MegaRAID SAS 9270-8i

Controller cache 1 GB 1 GB

Controller driver Microsoft 6.3.9600.16384
LSI MegaRAID SAS Driver
06.805.06.01-rc1

Operating system

Name Microsoft Windows 2012 R2 Red Hat Enterprise Linux Server 7.1

Kernel/Build 9600 3.10.0-229.el7.x86_64

File system ntfs xfs

Language English English

Ethernet

Vendor and model number Intel 82599ES 10-Gigabit Ethernet Intel 82599ES 10-Gigabit Ethernet

Type PCIe PCIe

Driver Intel 3.9.58.9101
Intel 10 Gigabit PCI Express Network
Driver, 4.0.1-k-rh7.1

USB ports

Number 6 6

Type 2.0 2.0

Figure 17: Configuration information for Database C & D servers.

DRAFT

A Principled Technologies test report 21

Querying virtualized databases with
Red Hat JBoss Data Virtualization

System JBoss Data Virtualization server

Power supplies

Total number 2

Vendor and model number DELTA DPS-750AB-21 A

Wattage of each (W) 750

Cooling fans

Total number 8

Vendor and model number San Ace 80 9G0812P1G09

Dimensions (h x w) of each 3-1/4” x 1-1/2”

Volts 12 v

Amps 1.4 amps

General

Number of processor packages 2

Number of cores per processor 18

Number of hardware threads per core 2

System power management policy Balanced

CPU

Vendor Intel

Name Xeon

Model number E5-2699 v3

Stepping C1

Socket type FCLGA2011-3

Core frequency (GHz) 2.30

Bus frequency 9.6 GT/s

L1 cache 32 KB + 32 KB (per core)

L2 cache 256 KB (per core)

L3 cache 45 MB (shared)

Platform

Vendor and model number Lenovo ThinkServer RD550

Motherboard model number 70CX001YUX

BIOS name and version PB1TS110(V1.10.0)

BIOS settings Default

Memory module(s)

Total RAM in system (GB) 128

Vendor and model number SK Hynix HMA42GR7MFR4N-TF

Type PC4-2133

Speed (MHz) 2,133

Speed running in the system (MHz) 2,133

Timing/Latency (tCL-tRCD-tRP-tRASmin) 15-15-15-33

Size (GB) 16

Number of RAM module(s) 8

Chip organization Double-sided

Rank Dual

DRAFT

A Principled Technologies test report 22

Querying virtualized databases with
Red Hat JBoss Data Virtualization

System JBoss Data Virtualization server

Hard disk

Vendor and model number Seagate ST3300657SS

Number of disks in system 4

Size (GB) 300

Buffer size (MB) 16

RPM 15K

Type SAS

Disk Controller

Vendor and model LSI MegaRAID SAS

Controller cache 1 GB

Controller driver LSI MegaRAID SAS Driver 06.805.06.01-rc1

Operating system

Name Red Hat Enterprise Linux Server 7.1

Kernel 3.10.0-229.el7.x86_64

File system xfs

Language English

Ethernet

Vendor and model number Intel 82599ES 10-Gigabit Ethernet

Type PCIe

Driver Intel 10 Gigabit PCI Express Network Driver, 4.0.1-k-rh7.1

USB ports

Number 6

Type 2.0

Figure 18: Configuration information for the JBoss data virtualization server.

DRAFT

A Principled Technologies test report 23

Querying virtualized databases with
Red Hat JBoss Data Virtualization

APPENDIX D – SOFTWARE CONFIGURATION INFORMATION

Configuring software by servers
Configuring all servers

We installed Red Hat Enterprise Linux 7 and its core packages on three database, the JDV, and the test-harness

servers. We installed Microsoft Windows Server 2012 R2 on the fourth database server. After installation, we connected

each to the 10GbE network, enabled NTP time synchronization, and disabled the firewall. We disabled SELinux and

NetworkManager on the Linux servers.

Configuring the Red Hat JBoss Data Virtualization 6.1 server

We installed and configured JDV 6.1 as follows:

1. yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel

2. Executed the JDV installer.

Configuring the Mysql database server

We installed and configured MySQL 5.6.23-3 as follows.

1. wget repo.mysql.com/mysql-community-release-el7-5.noarch.rpm
2. yum localinstall mysql-community-release-el7-5.noarch.rpm
3. yum install mysql-server mysql-community-libs

4. We modified the default configuration file /etc/my.cnf by adding the following settings to the mysqld
stanza:

innodb_buffer_pool_size = 108G

innodb_log_file_size=2G

innodb_flush_method=O_DIRECT

innodb_io_capacity=2000

innodb_io_capacity_max=6000

innodb_lru_scan_depth=2000

skip-name-resolve

max_connect_errors = 100000

max_connections=256

query_cache_type=1

query_cache_size = 20M

query_cache_limit = 10G

key_buffer_size = 4G

5. We modified the system resource limits for the mysql user by adding the following to
/etc/security/limits.conf:

mysql - nofile 8192

mysql - nproc 4096

6. systemctl start mysqld

7. mysql_secure_installation

8. mysql -u root
create user 'tpch'@'localhost" identified by 'tpch';

grant all privileges on *.* to 'tpch'@'%' identified by 'tpch' with grant

option;

flush privileges;

Configuring the PostgreSQL database server

We installed PostgrSQL 9.2.10 as follows:

http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm

DRAFT

A Principled Technologies test report 24

Querying virtualized databases with
Red Hat JBoss Data Virtualization

1. yum install postgresql postgresql-libs postgresql-server

2. mkdir -p /u01/data
3. chown postgres:postgres /u01/data

4. su - postgres
5. initdb -D /u01/data
6. postgres -D /u01/data &
7. createddb tpch

8. createuser -U postgres -d -e -E -l -P -r -s tpch
9. We updated the following line to the database connection configuration file, /u01/data/gp_hba/conf:

host all all 10.41.5.0/24 trust

10. We modified the database configuration by adding or updating the following to
/u01/data/postgresql.conf:

max_connections = 260

shared_buffers = 32GB

work_mem = 832MB

maintenance_work_mem = 1GB

wal_buffers = 32MB

checkpoint_segments = 64

checkpoint_completion_target = 0.9

effective_cache_size = 96GB

default_statistics_target = 1000

constraint_exclusion = on

log_checkpoints = on

log_connections = on

11. We restarted the database with this new configuration:
pg_ctl stop -D /u01/data; pg_ctl start -D /u01/data

Configuring the Database A

We installed and configured Database A following this methodology:

1. We installed addition RPMs from the standard Red Hat Enterprise Linux repositories.
2. We created a non-root laccount for the database administrator.
3. We modified system resources for the database administrator, similar to step 5 in the cionfiguring MySQL

database section.

4. We modified the system resources in /etc/sysctl.conf to enable the use of huge pages and to increase
the resourcdes available to the System V IPC subsystem.

5. We installed the database software per the vendor's documentation.

Configuring the test-harness database server

We installed Apache JMeter 2.13 and configured it to use the JDBC drivers for JDV (teiid-8.7.1.redhat-

8-jdbc.jar) and Database A. We installed OpenJDK 1.7.0 for the Java VM environment.

Configuring the Microsoft SQL Server server

We installed Microsoft SQL Server 12 (64 bit) with the default parameters, and created a database instance

named "tpch". We configured SQL Server to use a maximum degree of parallelism to 16, and Windows and SQL

authentication. We created a database user "tpch" and granted it access to the database instance "tpch".

Creating the database schema and generating data

We used the TPC-H-like data generation program available from tpch.org. We generated one dataset with a

scale factor of 1,000 (approximately 1 TB) to be loaded into each database. We exported the directory containing the

data tables via both NSF and CIFS.

DRAFT

A Principled Technologies test report 25

Querying virtualized databases with
Red Hat JBoss Data Virtualization

After creating the tables on each database, we loaded the data into each database as follows:

1. Database A:
We ran one SQL script to populate the tables and create indices.

2. Database B: PosrgreSQL
a. We mounted the shared directory at /mnt
b. We made a named pip file: mkfifo --mode=0666 /tmp/fifo
c. For each table, we stripped the trailing delimiter from its data file, sent it to the named pipe,

and populated the database table from the named pipe.
for table in partsupp part supplier region nation orders customer lineitem; do

 echo Working of table $table

 sed -i 's/|$//' /mnt/customer.tbl > /tmp/fifo &

 psql -U tpch -d tpch -c 'copy '$table' from '\'/tmp/fif\'' with delimiter as

'\'|\''

done

3. Database C: Microsoft SQL Server
a. We mounted the shared data director at Z:
b. We created and ran a t-sql script to load the data
BULK INSERT partsupp FROM 'Z:\tpch_2_17_0\partsupp.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT part FROM 'Z:\tpch_2_17_0\part.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT supplier FROM 'Z:\tpch_2_17_0\supplier.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT region FROM 'Z:\tpch_2_17_0\region.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT nation FROM 'Z:\tpch_2_17_0\nation.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT orders FROM 'Z:\tpch_2_17_0\orders.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT customer FROM 'Z:\tpch_2_17_0\customer.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

BULK INSERT lineitem FROM 'Z:\tpch_2_17_0\lineitem.tbl' WITH (TABLOCK,

DATAFILETYPE='char', CODEPAGE='raw', FIELDTERMINATOR = '|', rowterminator =

'0x0a');

4. Database D: MySQL
a. We mounted the shared directory at /mnt

b. We made a named pip file: mkfifo --mode=0666 /tmp/fifo
c. For each table, we sent it to the named pipe, and populated the database table from the

named pipe. For example,
cat mnt/customer.tbl > /tmp/fifo &

in the mysql shell

mysql> LOAD DATA INFILE '/tmp/fifo' INTO TABLE CUSTOMER fields terminated by '|'

lines terminated by '\n';

DRAFT

A Principled Technologies test report 26

Querying virtualized databases with
Red Hat JBoss Data Virtualization

APPENDIX E – ADDITIONAL INFORMATION FOR TRANSACTIONAL
WORKLOAD TESTING

For large page support in JVM, please visit the following pages:

 https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-
Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html

 https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-
Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html

Configuring the Java VM for Red HAT JDV
We used the following Java VM parameters for each instance of JDV for the OLTP tests. In particular, we

switched to G1 garbage collector.

-server
-Xmx16G
-Xms16G
-XX:+UseLargePages
-XX:MaxPermSize=512m
-XX:+UseG1GC
-XX:InitiatingHeapOccupancyPercent=0
-XX:+DisableExplicitGC
-XX:MaxGCPauseMillis=200
-XX:GCPauseIntervalMillis=5000

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Performance_Tuning_Guide/sect-Performance_Tuning_Guide-Java_Virtual_Machine_Tuning-Large_Page_Memory.html

DRAFT

A Principled Technologies test report 27

Querying virtualized databases with
Red Hat JBoss Data Virtualization

ABOUT PRINCIPLED TECHNOLOGIES

Principled Technologies, Inc.
1007 Slater Road, Suite 300
Durham, NC, 27703
www.principledtechnologies.com

We provide industry-leading technology assessment and fact-based
marketing services. We bring to every assignment extensive experience
with and expertise in all aspects of technology testing and analysis, from
researching new technologies, to developing new methodologies, to
testing with existing and new tools.

When the assessment is complete, we know how to present the results to
a broad range of target audiences. We provide our clients with the
materials they need, from market-focused data to use in their own
collateral to custom sales aids, such as test reports, performance
assessments, and white papers. Every document reflects the results of
our trusted independent analysis.

We provide customized services that focus on our clients’ individual
requirements. Whether the technology involves hardware, software, Web
sites, or services, we offer the experience, expertise, and tools to help our
clients assess how it will fare against its competition, its performance, its
market readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked
together in technology assessment for over 20 years. As journalists, they
published over a thousand articles on a wide array of technology subjects.
They created and led the Ziff-Davis Benchmark Operation, which
developed such industry-standard benchmarks as Ziff Davis Media’s
Winstone and WebBench. They founded and led eTesting Labs, and after
the acquisition of that company by Lionbridge Technologies were the
head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:
PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER,
PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND
ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE.
ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED
TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR
DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES,
INC.’S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.’S
TESTING. CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.

http://www.principledtechnologies.com/

