

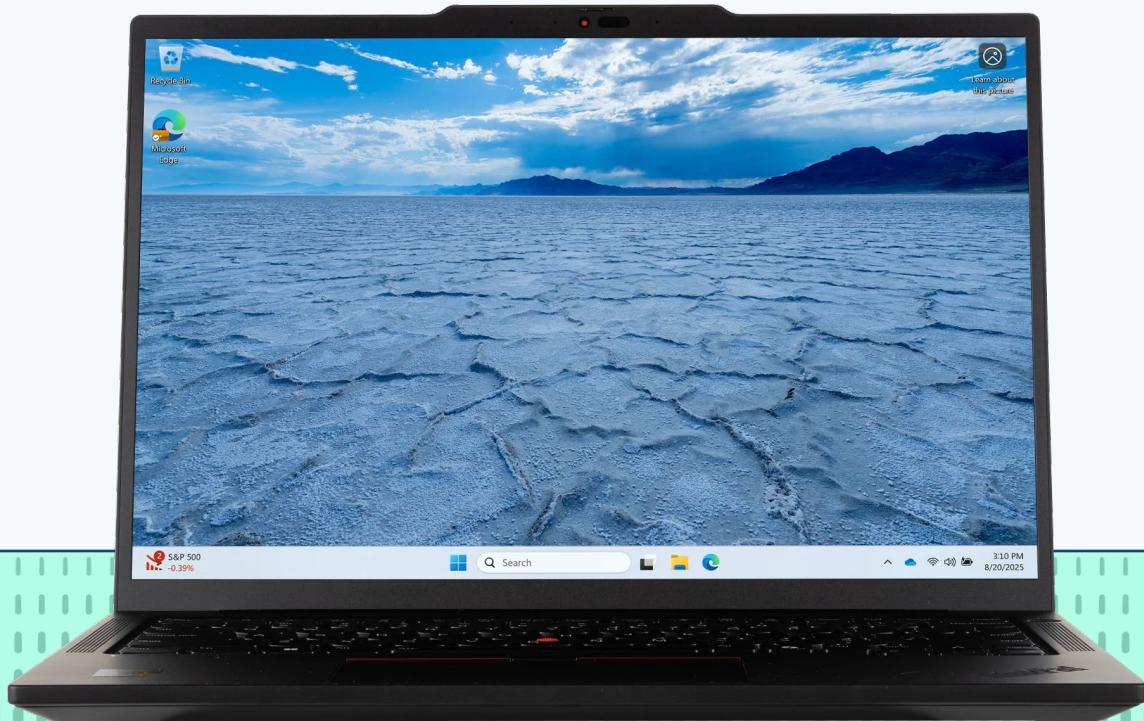



# Adding Copilot+ PCs with Snapdragon to your Lenovo fleet won't require IT deployment changes

We compared the time and effort required to complete OS deployment on Copilot+ PCs powered by Snapdragon or Intel processors in two Windows ecosystems



In May 2024, Lenovo® launched next-generation Copilot+ PCs powered by Snapdragon® X Elite processors.<sup>1</sup> Copilot+ PCs run AI tasks on specialized neural processing units (NPUs), which Microsoft requires have at least 40 trillions of operations per second (TOPS) of processing capability.<sup>2</sup> According to Qualcomm Technologies, Copilot+ PCs with Snapdragon X Series CPUs "deliver multiple days of battery life, unparalleled performance, plus efficiency to accelerate productivity and creativity."<sup>3</sup>


However, if you're acquiring new Copilot+ PCs for your company, you might wonder whether incorporating Snapdragon CPUs into your existing x64 CPU-based Windows ecosystem could present IT challenges. To explore that concern, we deployed Windows 11 Pro on two Lenovo ThinkPad® T14s Gen 6 AI PCs: One powered by a Snapdragon X Elite X1E-78-100 processor and the second by an Intel® Core™ Ultra 7 268V processor. We completed these tasks using two different OS deployment approaches—Windows Autopilot with Microsoft Intune and Configuration Manager—and found the OS deployment processes were comparable regardless of processor. This means you can incorporate Copilot+ PCs with Snapdragon into your Windows ecosystem without creating new deployment challenges for your IT team.

## How we tested

We report the average time and steps for OS deployment on these 14-inch Windows 11 Pro PCs with CPU, GPU, and NPU architecture. These Copilot+ PCs both contained 32 GB of DDR5 memory and 1 TB of NVMe® SSD storage:

| Snapdragon                                                                                                                                     | Intel                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| <b>Lenovo ThinkPad T14s Gen 6 AI PC</b>                                                                                                        | <b>Lenovo ThinkPad T14s Gen 6 AI PC</b>                                                                                              |
| Next-gen AI PC with a 12-core Snapdragon X Elite X1E-78-100 processor.<br>The integrated Qualcomm® Hexagon™ NPU delivers 45 TOPS. <sup>4</sup> | Next-gen AI PC with an 8-core Intel Core Ultra 7 268V processor.<br>The Integrated Intel AI Boost NPU delivers 48 TOPS. <sup>5</sup> |

We investigated how OS deployment works for organizations using Windows Autopilot with Microsoft Intune or Microsoft Configuration Manager (formerly Microsoft Endpoint Configuration Manager [MECM] or System Center Configuration Manager [SCCM]).



To simulate an organization using these Microsoft endpoint management tools, we reset the Copilot+ PCs to factory settings, added device IDs to Intune, and deployed operating systems via Microsoft Autopilot supported by Microsoft Entra ID and Intune. We configured organizational settings and performed user logins on each Intune-managed system.

Next, we reset the systems to factory default and booted the systems on a local network connected to Microsoft Configuration Manager [MCM]. We automatically deployed Windows 11 Pro operating systems using MCM task sequences. MCM applied organizational settings based on its internal setting and policies. We then performed domain user logins on each MCM client system.

In a corresponding study focused on management, we also completed mission-critical endpoint maintenance tasks on the same Copilot+ PCs. Read the [management study](#) to see what we found.

## Key features of Copilot+ PCs with Snapdragon

According to Qualcomm Technologies, Copilot+ PCs powered by Snapdragon X Series processors include a number of features designed to take end-user productivity, creativity, and communication to the next level:

**AI-accelerated user experiences:** Copilot+ PCs powered by Snapdragon contain dedicated NPUs for on-device AI features and capabilities.<sup>6</sup>

**Performance and efficiency:** Copilot+ PCs powered by Snapdragon deliver superior battery life and performance.<sup>7</sup>

**Connectivity:** Copilot+ PCs powered by Snapdragon include Qualcomm® FastConnect™ Mobile Connectivity System for multi-gigabit Wi-Fi® 6 and 7 performance, expanded efficiency and capability, and ultra-low latency.<sup>8</sup>

Qualcomm Technologies also notes these features of Copilot+ PCs powered by Snapdragon X Series processors bolster the administrator experience:

**Microsoft secured-core PCs:** Integrated hardware, firmware, and software protections to protect devices, identities, and data.<sup>9</sup>

**Advanced security:** Additional silicon-based TPMs (Trusted Platform Modules), Zero Trust sensors, and resiliency features for OS, firmware, and BIOS protection.<sup>10</sup>

**App Assure:** This Microsoft FastTrack benefit ensures compatibility of business-critical apps continue to work following deployment in mixed-CPU environments.<sup>11</sup>

► [Learn more about Snapdragon X Elite processors](#)

# Deploying devices

IT administrators face a variety of challenges in their day-to-day work, and diversifying your Lenovo PC fleet with Copilot+ PCs powered by Snapdragon X Series processors shouldn't add to their burden. If your IT team's established deployment method is straightforward and repeatable across your entire Lenovo PC fleet regardless of processor, more of their time can go towards addressing requests and pressing problems on your IT ticketing list. This study looks at Snapdragon vs. Intel OS deployment. However, based on [our recent study comparing deployment on AMD and Intel processor-powered systems](#), you can likely expect similar results against AMD processors.

## Approach 1: Autopilot with Intune

We found that deploying both Copilot+ PCs required the same 5 steps through the management tabs in the Intune management hub:

1. Export the hardware hash.
2. Upload the device ID.
3. Power on the device.
4. Register the device.
5. Log into the device.

The only true admin downtime occurred between steps 4 and 5, when we had to wait for Autopilot to create a Microsoft Entra object. This "system" process averaged just over a minute and a half on both AI PCs.

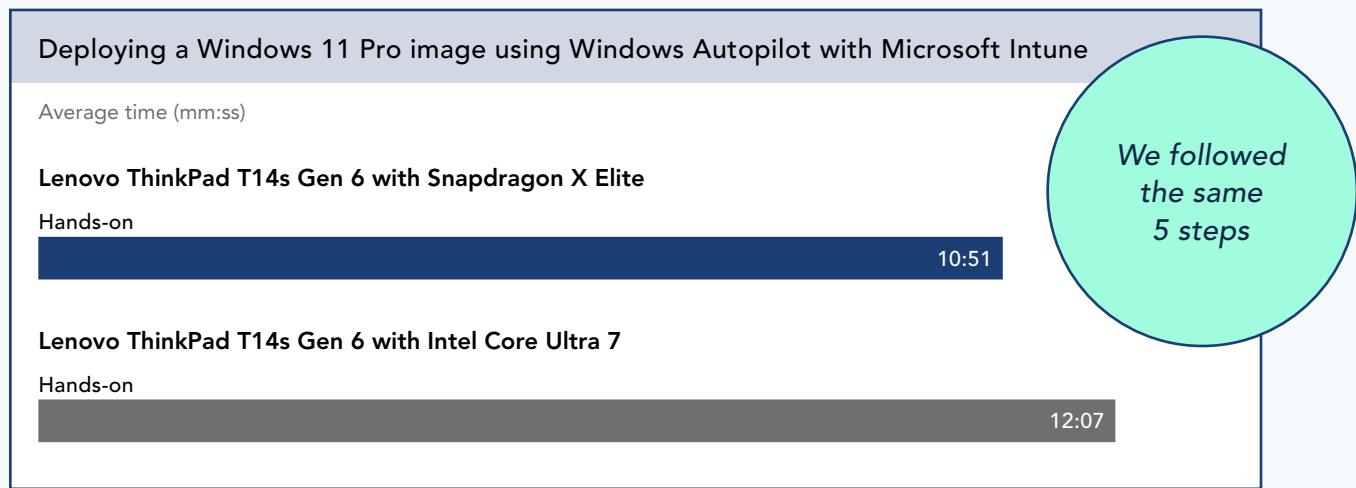



Figure 1: Average total time to deploy a Windows 11 Pro image using Windows Autopilot with Microsoft Intune. Source: PT.

## Approach 2: Configuration Manager task sequence

We found that deploying both Copilot+ PCs required the same 5 steps when using architecture-specific task sequences:

1. Press the power button on the target device.
2. To bring up the boot menu, press F12 during boot.
3. Select PXE BOOT from the boot menu and press Enter.
4. When prompted, enter the password for the MCM shares.
5. When prompted, select the installation option presented for your system (Windows 11 ARM or Windows 11 x64) and press OK.

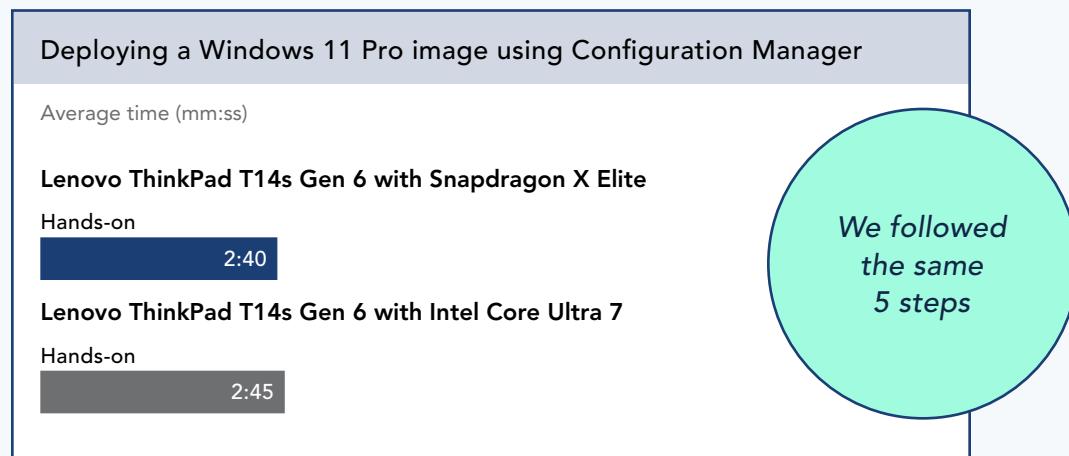



Figure 2: Average total time to deploy a Windows 11 Pro image using Configuration Manager. Source: PT.

## Conclusion



In our hands-on tests, the IT team time and effort required to deploy a Copilot+ PC powered by Snapdragon was comparable with that of deploying a Copilot+ PC with an Intel Core Ultra processor. This consistency enables you to incorporate new Copilot+ PCs with Snapdragon into your existing x64 CPU-based Windows ecosystem without introducing new deployment challenges.

1. Lenovo StoryHub, "Lenovo Supercharges Copilot+ PCs with Latest Yoga Slim 7x and ThinkPad T14s Gen 6," accessed September 22, 2025, <https://news.lenovo.com/pressroom/press-releases/lenovo-supercharges-next-gen-ai-pcs-with-latest-yoga-slim-7x-and-thinkpad-t14s-gen-6/>.
2. Qualcomm, "What TOPS means," accessed October 6, 2025, <https://www.qualcomm.com/content/dam/qcomm-mar-tech/dm-assets/documents/What-TOPS-Means-Snapdragon-X-Series.pdf>.
3. Qualcomm, "Snapdragon X Series is the Exclusive Platform to Power the Next Generation of Windows PCs with Copilot+ Today," accessed October 6, 2025, <https://www.qualcomm.com/news/releases/2024/05/snapdragon-x-series-is-the-exclusive-platform-to-power-the-next->.
4. Qualcomm, "Snapdragon X Elite," accessed October 6 2025, <https://www.qualcomm.com/products/mobile/snapdragon/laptops-and-tablets/snapdragon-x-elite>.
5. TechPowerUp, "Intel Core Ultra 7 268V," accessed October 6, 2025, <https://www.techpowerup.com/cpu-specs/core-ultra-7-268v.c3793>.
6. Qualcomm, "The platform for on-device AI," accessed October 6, 2025, <https://aihub.qualcomm.com>.
7. Qualcomm, "Battery life meets performance: You no longer have to decide which you value more in a PC," accessed October 6, 2025, <http://www.qualcomm.com/news/onq/2024/06/battery-life-meets-performance-copilot-plus-pcs-powered-by-snapdragon-x-series>.
8. Qualcomm, "Raising the bar for wireless connectivity," accessed October 6, 2025, <https://www.qualcomm.com/products/technology/wi-fi/fastconnect>.
9. Microsoft Ignite, "Windows 11 Secured-core PCs," accessed October 6, 2025, <https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-highly-secure-11>.
10. Qualcomm, "Snapdragon X Series: A new era for enterprise efficiency," accessed October 6, 2025, <https://www.qualcomm.com/news/onq/2025/01/snapdragon-x-series-a-new-era-for-enterprise-efficiency>.
11. Microsoft Ignite, "App Assure," accessed October 6, 2025, <https://learn.microsoft.com/en-us/windows/compatibility/app-assure>.

Read the science behind this report ►



Facts matter.®

Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners. For additional information, review the science behind this report.

This project was commissioned by Qualcomm Technologies.