
The science behind the report:

Test report: Strong performance
for AI image classification workloads
on Stratus ztC Endurance 7100
compute platforms

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Test report : Strong performance for AI image classification workloads on
Stratus ztC Endurance 7100 servers.

We concluded our hands-on testing on August 19, 2024. During testing, we determined the appropriate
hardware and software configurations and applied updates as they became available. The results in this report
reflect configurations that we finalized on August 16, 2024 or earlier. Unavoidably, these configurations may not
represent the latest versions available when this report appears.

Our results
To learn more about how we have calculated the wins in this report, go to http://facts.pt/calculating-and-highlighting-wins.
Unless we state otherwise, we have followed the rules and principles we outline in that document.

Table 1: Results of our throughput testing, in images per second.

Instances Cores Batch size Precision Run 1 Run 2 Run 3

48 1 116 fp32 699.277 700.169 699.665

48 1 80 bf16 3,100.77 3,099.33 3,097.01

48 1 116 int8 5,043.64 5,029.16 5,049.22

Table 2: Results of our latency testing, in milliseconds.

Instances Batch size Precision Run 1 Run 2 Run 3

1 1 fp32 19.988 20.053 19.597

1 1 bf16 7.059 7.475 7.431

1 1 int8 6.164 5.625 5.804

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024

A Principled Technologies report: Hands-on testing. Real-world results.

https://facts.pt/KIrWE8h
https://www.principledtechnologies.com
https://facts.pt/KIrWE8h
https://facts.pt/KIrWE8h
https://facts.pt/calculating-and-highlighting-wins

System configuration information
Table 3: Detailed information on the systems we tested.

System configuration information Stratus ztC Endurance™ 7100

BIOS name and version Stratus 3.31.0.0

Non-default BIOS settings Performance profile

Operating system name and version/build number VMware® vSphere® 8.0 U2 2380479

Date of last OS updates/patches applied 8/16/2024

Power management policy Performance

Processor

Number of processors 2

Vendor and model Intel® Xeon® Gold 5148Y

Core count (per processor) 24

Base frequency (GHz) 2.00

Stepping 1

Memory module(s)

Total memory in system (GB) 1,024

Number of memory modules 16

Size (GB) 64

Type DDR5

Speed (MHz) 4,800

Speed running in the server (MHz) 4,800

Local storage

Number of drives 2 / 2

Drive vendor and model Micron® 7450 MTFDKCB1T6TFS / Micron 7450 MTFDKCB3T2TFS

Drive size 1.6 TB / 3.2 TB

Drive information (type) NVMe® / NVMe

Network adapter #1

Vendor and model Intel X550-T2

Number and type of ports 2x 10GbE

Driver version VMware vSphere 8.0 U2 i40en

Network adapter #2

Vendor and model Intel X710-DA2

Number and type of ports 2x 10GbE

Driver version VMware vSphere 8.0 U2 i40en

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 2

System configuration information Stratus ztC Endurance™ 7100

Network adapter #3

Vendor and model Broadcom® Integrated 1GbE

Number and type of ports 2x 1GbE

Driver version VMware vSphere 8.0 U2 igbn

Power supplies

Vendor and model Stratus Zen7100

Number of power supplies 2

Wattage of each (W) 2,400

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 3

How we tested

About our testing

Our testing used the following dual-socket solution:

• Stratus ztC Endurance 7100

• 2x Intel Xeon Gold 5148Y processors

• 1TB DDR5 memory

We used VMware vSphere 8.0 U2 as our hypervisor. We created a single VM running Ubuntu 22.04, with 48 vCPU and 900 GB
virtual memory.

Installing VMware vSphere 8
1.	 Boot to the VMware vSphere 8 installation media.
2.	 To continue, press Enter.
3.	 To accept the license agreement, press F11.
4.	 Select the OS installation location.
5.	 Select a language, and create the root password.
6.	 To install, press F11.
7.	 Navigate to the management IP address.
8.	 Under Configure, set the Power Management policy to High performance.

Creating the base VM
1.	 Use a web browser to connect, and log into the vSphere instance.
2.	 Right-click the host, and click New VM.
3.	 Assign the VM the following properties:

• 48 virtual CPU (24 cores on 2 sockets)

• IOMMU enabled

• 900 GB memory

4.	 Click Finish.

Installing the OS
1.	 Boot the VM to the Ubuntu Server 22.04 LTS installation media.
2.	 When prompted, select Install Ubuntu.
3.	 Select the desired language, and click Done.
4.	 Choose a keyboard layout, and click Done.
5.	 At the Network Connections screen, click Done.
6.	 At the Configure Proxy screen, click Done.
7.	 At the Configure Ubuntu Archive Mirror screen, click Done.
8.	 Select Use an entire disk, and click Done.
9.	 Click Continue.
10.	 Enter user account details, and click Done.
11.	 Enable OpenSSH Server install, and click Done.
12.	 At the installation summary screen, click Done.
13.	 When the installation finishes, unmount the installation media, and reboot the VM.

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 4

Configuring the OS
1.	 Boot the VM to the operating system, and log in with the configured user.
2.	 Update the system:

apt update -y

3.	 Upgrade the system:

apt upgrade -y

4.	 Install tuned and apply the hpc-compute profile:

apt install -y tuned
tuned-adm profile hpc-compute

Installing the benchmark
1.	 Install the prerequisite software:

sudo apt install -y install linux-image-generic-hwe-22.04 numactl google-perftools

2.	 Install Anaconda:

sudo apt install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1 libxcursor1
libxcomposite1 libasound2 libxi6 libxtst6

curl -O https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh

bash Anaconda3-2024.06-1-Linux-x86_64.sh

3.	 Create a new conda environment:

conda create --name intelpy38 python=3.8

conda activate intelpy38

pip install virtualenv

pip install --upgrade pip virtualenv -p ~/anaconda3/envs/intelpy38/bin/python ~/venv-tf

source ~/venv-tf/bin/activate

4.	 Install Intel Extension for TensorFlow:

pip install --upgrade intel-extension-for-tensorflow[cpu]

python -c "import intel_extension_for_tensorflow as itex; print(itex.__version__)"

5.	 Clone the IntelAI repository:

mkdir -p ~/github/intelai

cd ~/github/intelai

git clone https://github.com/IntelAI/models.git

6.	 Download and process the ImageNet ILSVRC2012 dataset using the instructions here: https://github.com/intel/ai-reference-models/
tree/main/datasets/imagenet#imagenet-dataset-scripts.

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 5

Running the benchmark
1.	 Log into the VM.
2.	 Activate the conda environment:

conda activate intelpy38
source ~/venv-tf/bin/activate

3.	 Navigate to the run directory:

cd ~/github/intelai/models

4.	 Run the test script (found in the Scripts section below):

./start_all.sh

Scripts
Below are the scripts we used in testing:

start_all.sh

#!/usr/bin/bash

echo "Starting testing"

./run_resnet50.sh >out.txt 2>&1 & disown

EOF

run_resnet50.sh

#!/usr/bin/bash

source ${HOME}/anaconda3/bin/activate intelpy38

source ${HOME}/venv-tf/bin/activate

DATE=$(date +"%Y%m%d%H%M")

export DATASET_DIR=${HOME}/imagenet/tf_records/

export CORES_PER_INSTANCE=1

export BATCH_SIZE="" # Default ""

export OUTPUT_DIR=${HOME}/logs/${DATE}

export ITERATIONS=3

export TEST_HOME=./quickstart/image_recognition/tensorflow/resnet50v1_5/inference/cpu

mkdir -p ${OUTPUT_DIR}

echo "$(date) Starting resnet50 throughput testing"

export PROGRAM=inference_throughput_multi_instance.sh

./run_resnet50_int8.sh >${OUTPUT_DIR}/throughput.int8.txt

./run_resnet50_bfloat16.sh >${OUTPUT_DIR}/throughput.bfloat16.txt

./run_resnet50_fp32.sh >${OUTPUT_DIR}/throughput.fp32.txt

echo "$(date) Starting resnet50 latency testing"

export LATENCY_ITERATIONS=3

./run_resnet50_latency.sh >${OUTPUT_DIR}/latency.txt 2>&1

echo "$(date) Ended resnet50 testing"

EOF

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 6

run_resnet50_int8.sh

#!/usr/bin/bash

export PRECISION=int8

export PRETRAINED_MODEL=~/models/resnet50v1_5_int8_pretrained_model.pb

for i in $(seq ${ITERATIONS})

do

 ${TEST_HOME}/${PROGRAM}

done

EOF

run_resnet50_bfloat16.sh

#!/usr/bin/bash

export PRECISION=bfloat16

export PRETRAINED_MODEL=~/models/resnet50_v1_5_bfloat16.pb

for i in $(seq ${ITERATIONS})

do

 ${TEST_HOME}/${PROGRAM}

done

EOF

run_resnet50_fp32.sh

#!/usr/bin/bash

export PRECISION=fp32

export PRETRAINED_MODEL=~/models/resnet50_v1.pb

for i in $(seq ${ITERATIONS})

do

 ${TEST_HOME}/${PROGRAM}

done

EOF

run_resnet50_latency.sh

#!/usr/bin/bash

export PROGRAM=${HOME}/github/intelai/models/models/image_recognition/tensorflow/resnet50v1_5/inference/
cpu/eval_image_classifier_inference.py

export PYTHON=${HOME}/venv-tf/bin/python

echo "### INT8 PRECISION ###"

export PRECISION=int8

export PRETRAINED_MODEL=${HOME}/models/resnet50v1_5_int8_pretrained_model.pb

for i in $(seq ${LATENCY_ITERATIONS})

do

 LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4 \

 OMP_NUM_THREADS=4 numactl --localalloc --physcpubind=0,1,2,3 \

 ${PYTHON} ${PROGRAM} \

 --input-graph=${PRETRAINED_MODEL} \

 --num-inter-threads=1 \

 --num-intra-threads=4 \

 --batch-size=1 \

 --warmup-steps=50 \

 --steps=1500 \

 --data-num-inter-threads=1 \

 --data-num-intra-threads=4 \

 --data-location=${DATASET_DIR}

done

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 7

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

This project was commissioned by Penguin Solutions.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

echo "### FP32 PRECISION ###"

export PRECISION=fp32

export PRETRAINED_MODEL=~/models/resnet50_v1.pb

for i in $(seq ${LATENCY_ITERATIONS})

do

 OMP_NUM_THREADS=4 numactl --localalloc --physcpubind=0,1,2,3 \

 ${PYTHON} ${PROGRAM} \

 --input-graph=${PRETRAINED_MODEL} \

 --num-inter-threads=1 \

 --num-intra-threads=4 \

 --batch-size=1 \

 --warmup-steps=50 \

 --steps=1500 \

 --data-num-inter-threads=1 \

 --data-num-intra-threads=4 \

 --data-location=${DATASET_DIR}

done

echo "### BFLOAT16 PRECISION ###"

export PRECISION=bfloat16

export PRETRAINED_MODEL=~/models/resnet50_v1_5_bfloat16.pb

for i in $(seq ${LATENCY_ITERATIONS})

do

 OMP_NUM_THREADS=4 numactl --localalloc --physcpubind=0,1,2,3 \

 ${PYTHON} ${PROGRAM} \

 --input-graph=${PRETRAINED_MODEL} \

 --num-inter-threads=1 \

 --num-intra-threads=4 \

 --batch-size=1 \

 --warmup-steps=50 \

 --steps=1500 \

 --data-num-inter-threads=1 \

 --data-num-intra-threads=4 \

 --data-location=${DATASET_DIR}

done

EOF

Read the report at https://facts.pt/KIrWE8h

Test report: Strong performance for AI image classification workloads on Stratus ztC Endurance 7100 compute platforms September 2024 | 8

https://www.principledtechnologies.com
https://facts.pt/KIrWE8h

