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Optimize performance and budget for AI applications 
with Microsoft Azure 
A single cloud approach on Azure offers performance and cost benefits 
and the potential for better security and development velocity compared 
to a multi-cloud approach with AWS
Organizations around the world are embracing the power of AI, especially RAG-based AI apps and agentic AI, to 
supercharge their business processes and drive innovation. While some organizations may employ a multi-cloud 
approach to building and hosting these AI apps due to familiarity or legacy that takes advantage of different cloud 
service provider (CSP) strengths or, this approach often comes with unexpected costs. For example, using Azure to get 
the latest and most popular OpenAI models from Azure OpenAI in Azure AI Foundry, but hosting your AI workloads on 
Amazon Web Services (AWS™), might cost you in terms of both performance and budget. Switching to a single cloud 
approach with Azure for your next OpenAI RAG LLM app can boost performance while saving costs and centralizing key 
parts of the development workflow.

Using Azure OpenAI in Azure AI Foundry Models allows organizations to also take advantage of robust integrations 
with the rest of the Azure cloud platform, such as security and development tools, along with the performance and 
cost benefits of OpenAI’s models. We evaluated a single cloud vs multi cloud AI application deployment for key 
considerations such as performance, total cost of ownership, and security. For performance testing, we built a simple 
retrieval-augmented generation (RAG) AI application and hosted it on both AWS and Azure using roughly equivalent 
services, with both applications using the GPT-4o mini model in Azure OpenAI. Our performance tests showed that the 
Azure application had faster responses, a slightly higher output tokens per second rate, and superior search performance 
with Azure AI Search compared to the AWS application. This report discusses the benefits of that performance 
advantage, which include providing a better overall user experience with your next AI app. We also discuss how 
switching to Azure as a single CSP for an AI application could mitigate costs and security challenges.

Improve user 
experience for your RAG 
application with Azure

Up to 59.7% less time to 
execute application end-
to-end compared to an 

AWS deployment

Get a faster search 
service layer for your 

RAG application 
with Azure

Up to 88.8% less time spent in 
Azure AI Search compared to 

Amazon Kendra

Save money and 
improve security 

by choosing to deploy your 
OpenAI application on Azure 

vs. choosing a multi-cloud  
deployment
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Comparing ease of deployment

About RAG applications

Natural language processing (NLP) applications 
are not new in the AI landscape. After all, Apple 
released their voice assistant, Siri, in 2011, 
nearly 14 years ago.1 Chatbots on websites and 
AI-assisted search engines have also become 
familiar sights in the online world. They have 
continued to involve and improve, especially with 
the introduction of the many chatbots based on 
large language models (LLMs) such as ChatGPT.2 
Retrieval and context augmentation, by which 
organizations can augment pre-trained models 
with their own data, is now an integral part of AI 
applications that range from simple chat-based 
apps to more complex agentic AI workflows. Using 
this approach, businesses can now save time while 
enhancing the quality of their AI solutions. Use 
cases for RAG-based applications include chatbots, 
voice assistants, code generation, and more.3 

While these applications can help save time, 
money, and effort, they can be difficult to deploy. 
Challenges to consider include:

• Selecting the right AI model and framework for the type of AI application. As AI has exploded in 
popularity, the number of models and frameworks available has grown exponentially, making the right 
choice critical.

• Confirming the tools, software, and services that the app requires. AI applications are more than just 
their models and frameworks; they may require a constellation of other software or tools, some of which 
are available as cloud-native applications. Though our tested application was not agentic in nature, agentic 
applications, in particular, require a toolchain to build, orchestrate, scale, and operate them effectively. 

• Right-sizing compute, storage, and networking to provide the performance required for the 
application. AI applications generally require low latency and strong compute power, with the ability to 
easily scale up or down based on demand. Choosing cloud instances and data storage options that are 
optimized for AI workloads will help. You may also wish to consider fully managed services.

• Determining the right location and proximity of compute and storage resources to optimize 
application response time. By keeping data as close as possible to compute resources, whether CPUs 
or GPUs, developers and data engineers can ensure acceptable communication latency across the 
application components. 

• Securing all aspects of the application. Some organizations must confront the compliance requirements 
of GDPR, HIPAA, or other regulations, but even those that don’t must ensure their AI applications and 
their data are secure. Encrypting data both at rest and in transit and using appropriate access controls can 
help. More complex agentic applications expand the security footprint, so continuous observability and 
governance are required to ensure that the applications and resources they access are secure. 

About Azure AI Foundry

Azure AI Foundry is Microsoft’s unified platform 
for designing, customizing, and managing secure 
generative AI applications and agents. It integrates 
trusted security, governance, and observability 
tools, supports 11,000+ models, and enables 
integrated development with popular tools such 
as GitHub, Visual Studio, and Copilot Studio. 
Azure AI Search, part of Azure AI Foundry, enables 
developers to ground their AI apps and agents in 
company data, providing context-aware, relevant 
search results. Azure AI Foundry also Includes Azure 
AI Foundry Agent Service, which connects Foundry 
Models and Azure AI Search with Azure AI services 
and actions into a single runtime. According to 
Microsoft, Foundry Agent Service “manages 
threads, orchestrates tool calls, enforces content 
safety, and integrates with identity, networking, 
and observability systems to help ensure agents are 
secure, scalable, and production ready.”4
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CSPs such as Azure and AWS provide tools and guides to help solve some of these challenges. One such 
platform is Azure AI Foundry, which provides customers with quick and easy access to the latest OpenAI 
models, including GPT-5, GPT-4.1, o4-mini, o3-deep-research, and more, making it attractive to users hosting 
on other CSPs. If you plan to leverage Azure OpenAI for your application, it makes sense to host the rest of your 
application on Azure, as well, rather than linking from AWS. To evaluate how deploying on Azure can optimize 
your AI project, we tested a RAG-based AI application on both Azure and AWS to compare ease of deployment, 
costs, service features, and more. In both of our deployments, we used Azure OpenAI.

Microsoft offers a rich complementary set of tools for developers to easily build and deploy applications across 
the Azure ecosystem. These tools include:

• Visual Studio Code: A powerful free code editor

• GitHub Copilot: A generative AI coding assistant with access to multiple AI models

• Approximately 20 Azure extensions for Visual Studio Code: Includes extensions for the most popular 
Azure services such as Azure SQL Databases, Azure Functions, Azure App Service, and others

• Azure console: The traditional web UI for managing Azure resources

• Azure CLI: A cross-platform-compatible command-line interface for accessing and managing 
Azure resources

• Microsoft Copilot Studio: Used for low-code automation and agentic development

• Compatibility with third-party tools: Including Terraform, for infrastructure as code

We experienced the ease of developing applications on Azure in this project, using most of the tools in the list 
above to accelerate our development time and iterate throughout the project. We specifically used Terraform 
with the Azure provider to provision most of our infrastructure, the Azure CLI for health checks, Visual Studio 
Code with GitHub Copilot, and Azure Function tools.

Our AI application

We set out to build a simple RAG AI application that used several of each provider’s applicable services. The 
core services that we included were a web app service, a function service, a search service for the RAG context, a 
data layer, the LLM, and response tracking. We used a sample public dataset with musical instrument reviews for 
our dataset, and we used AI to analyze the dataset and generate 280 unique questions for our simulated users 
to ask of the application. We list the services we used for our deployments on Azure and AWS in Table 1, and 
Figure 1 shows our web application data flow.

Table 1: List of services we used for our LLM application on Azure and AWS. Source: PT.

Application component Azure AWS

Web app Azure Web App Service AWS Elastic Beanstalk

Function Azure Function AWS Lambda

Search Azure AI Search Amazon Kendra

Data Azure SQL Database Amazon RDS, SQL Server

LLM service Azure OpenAI in Azure AI Foundry

Response tracking Azure Storage Account (Table) Amazon DynamoDB
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Figure 1: Architecture of our web application data flow. Note that Azure AI Search also uses an embedding model (text-embedding-
ada-002) for both inbound queries and one-time vectorization. Source: PT.

The application followed this workflow:

1.  A simulated user enters a prompt into the web application.

2.  The web application passes the prompt to the function.

3.  The function:

a.  Tracks elapsed time of search responses and model responses.

b.  Makes a call to the search service to retrieve relevant context, and returns search results to the function.

c.  Packages the context and the original query into the LLM prompt.

d.  Makes a call to Azure OpenAI containing the original query and augmented context.

e.  Receives the streamed reply to the function

f.  Streams the LLM response and the timing metadata to the web application

4.  The web application displays the reply on the screen, and logs the reply and its timings.

We tested three scenarios with different user scales:

• Single user: A single user asking 100 questions.

• 100 users: 100 users, up to 50 concurrent users at a time, each starting 2 seconds apart and asking 70 
questions. In this scenario, when the first user finished, user number 51 would start. When the second user 
finished, user 52 would start, and so on.

• 150 users: 150 users, up to 100 concurrent users at a time, each starting 2 seconds apart and asking 70 
questions. In this scenario, when the first user finished, user number 101 would start. When the second 
user finished, user 102 would start, and so on.
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We tested both Azure and AWS application deployments targeting an Azure OpenAI resource to keep the 
AI platform constant. We used GPT-4o mini as the model, and we used a Regional Provisioned Throughput 
deployment with 50 PTUs.

For additional information on our test configurations and scale-point differences per component, see the  
science behind the report.

Deploying on Azure

Table 2 lists the various components of our application on Azure. We used a combination of Terraform scripts 
and configuration workflows in the Azure console to deploy and adjust our application. We deployed all 
components in the same Azure region, US East 2, for consistency and to remove any inter-region latency. We 
used VS Code for our IDE and used a combination of command line tools and VS Code plugins to build both the 
web app and the Azure Functions component. 

Table 2: The services we used to deploy our LLM application on Azure. Source: PT.

Component Azure service Service specifics

Web app Azure App Service Product: Azure App Service 
App service plan pricing tier andinstance: Premium, P1v3 
Created via: Terraform 
Scaling modified in Azure portal

Function Azure Functions Product: Azure Functions 
App service plan pricing tier and instance: Premium, P1v3 
Created via: Terraform 
Scaling modified in Azure portal

Search Azure AI Search Product: Azure AI Search 
Pricing tier: Standard S1 
Partitions: 1 
Created via: Terraform 
Scaling modified in Azure portal

Data Azure SQL Database Product: Azure SQL Database 
Purchase model: DTU 
Service tier: S2 (Standard, 50 DTU) 
Max storage: 10GB 
Created via: Terraform

LLM service Azure OpenAI in Azure AI 
Foundry

Model: GPT-4o-mini 
Deployment type: Regional Provisioned Throughput, 
50 PTUs

Embedding model Azure OpenAI in Azure AI 
Foundry

Model: text-embedding-ada-002 
Deployment type: Global Standard 
Use: Used in conjunction with Azure AI Search to do 
embeddings on user prompts

Response tracking Azure Storage Account (Table) Service: Azure Storage Table
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Deploying on AWS

Table 3 lists the various components of our application on AWS. We configured the AWS application to be as 
similar as possible to the Azure app regarding service levels, quotas, instance types, and application code. 
We reused the same application code from the Azure function and web app components, changing only the 
necessary pieces.

We used a combination of Terraform scripts and configuration workflows in the AWS console to deploy and 
adjust our application. We deployed all components in the same AWS region, US East, for consistency and to 
remove any inter-region latency. We used VS Code for our IDE and used a combination of command line tools 
and VS Code plugins to build both the Elastic Beanstalk application and the Lambda Function.

Note that we used Azure OpenAI for our LLM service in both Azure and AWS scenarios. We did this for 
consistency at the model layer, and to mimic a situation where a business may have a requirement to 
use OpenAI models.

Table 3: The services used to deploy our LLM application on AWS. Source: PT.

Component AWS service Service specifics

Web app Amazon Elastic Beanstalk Product: Amazon Elastic Beanstalk 
Type: Load balanced 
Instance type: t3.large 
Created via: AWS console 
Scaling modified in AWS console

Function AWS Lambda Product: AWS Lambda 
Allocated memory: 256MB 
Allocated storage: 512MB 
Created via: AWS console

Search Amazon Kendra Product: Amazon Kendra 
Edition: GenAI Enterprise Edition 
Storage capacity units: Default 
Created via: Terraform 
Modifications via: AWS console

Data Amazon Relational Database 
Service (RDS) SQL Server

Product: Amazon Relational Database Service (RDS) 
Microsoft SQL Server 
Edition: Express 
Instance class: t3.medium 
Allocated storage: 20GB (minimum for express edition) 
Storage type: gp3 
Created via: Terraform

LLM service Azure OpenAI in Azure AI 
Foundry

Model: GPT-4o-mini 
Deployment type: Regional Provisioned Throughput, 
50 PTUs

Embedding model None Amazon Kendra expects natural language queries, no 
embedding model required

Response tracking Amazon DynamoDB Defaults
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Application performance
Why performance matters

One of the challenges in designing and deploying an AI application, whether it is chat-based, an agent, or 
another AI use case, is ensuring that you size your environment to deliver the performance you need. For a RAG 
application, the right performance levels could mean the difference between happy or unhappy customers trying 
to use an online chatbot for help or information. For example, if an AI application that interacts with humans at 
the end-user stage is slow to respond, users can feel frustrated and may stop using it all together. Customers 
with an exceptional experience, on the other hand, could lead to increased sales and repeat customers. In 
addition, performance levels could make a difference in your developers benefiting from AI-assisted coding and 
their productivity.

There are many ways to tune performance for app components, including compute, storage, and other 
resources. Keeping applications, models, and data close to each other is vital to keep response times down, so 
hosting multiple application components in proximity—say in the same geographic region or preferably in the 
same cloud provider—could help mitigate latency issues. Ultimately, for your users, it comes down to questions 
such as “How quickly does the application finish what I asked of it?” or “How quickly it is responding?”

Two primary user-facing performance metrics are end-to-end application response time and time between 
tokens. We measured both metrics in our Azure deployment and AWS deployment. End-to-end application 
response time, in our case, refers to the length of time between the user submitting the request and the chat 
returning and completing a response. When measuring end-to-end application response time, lower numbers 
are better. In our test, time between tokens refers to the rate at which the application stack streamed tokens 
back to the user. When analyzing time between tokens, lower numbers are better.

How our application performed

End-to-end application findings

We found that Azure consistently delivered lower end-to-end application response time for our chat application.

For our 1-user, 50-user, and 100-user scenarios, we captured timestamps in our application to 
measure the following:

• Total elapsed application time: The length of time between our web app page load completing and the  
LLM response completed streaming to the UI

• Total function time: The total time spent in the function layer (Azure Function or AWS Lambda), including:

 y Search time: The time, from the function’s perspective, spent in the call to each provider’s search 
resource (Azure AI Search or Amazon Kendra)

 y Azure OpenAI time: The time, from the function’s perspective, spent from calling Azure OpenAI to 
receiving the last token streamed
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We ran each scenario three times and selected the median run based on end-to-end elapsed application time. 
With a single user, the Azure application took 24 percent less time to complete than the AWS application did. At 
50 users, the Azure application took 59.7 percent less time and at 100 users, 56.5 percent less time to complete 
than the application deployed on AWS (see Figure 2).

Azure AI Search versus Amazon Kendra

A primary contributor to the lower elapsed time for the Azure app was the fact that Azure AI Search returned 
context results consistently and significantly faster, especially as we increased user count. Amazon Kendra, by 
default, allows 10 queries per second (100 query capacity units [QCU]). We attempted to increase query capacity 
on Amazon Kendra via AWS support but at the time of testing, AWS support informed us that the GenAI 
Enterprise Edition did not support greater than 100 QCU.

With a single user, Azure AI Search took 53.7 percent less time to complete than Amazon Kendra. With 50 users, 
Azure AI Search took 88.8 percent less time to complete. At 100 users, Azure AI Search took 82 percent less time 
to complete than Amazon Kendra (see Figure 3).

Average total application elapsed time by user count

Seconds  |  Lower is better

1 user
1.64

2.18

1.52

3.79

1.74

4.01

Application running on Azure

Application running on AWS

50 users

100 users

Figure 2: Average application elapsed time for our three user scenarios. Source: PT.

Average search service elapsed time

Seconds  |  Lower is better

1 user
0.55

1.2

0.29

2.65

0.5

2.8

50 users

100 users

Azure AI Search

Amazon Kendra

Figure 3: The average time spent in the search layer of the application, in seconds, for our three user count scenarios. Source: PT.
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Time between tokens

Any chat application experiences variation in user prompt length, context length and complexity, and response 
length, and our applications were no different. To evaluate Azure OpenAI performance, we observed time 
between token performance. We used the same Azure OpenAI resource for both Azure and AWS, demonstrating 
a scenario where organizations have application components on AWS but wish to use Azure OpenAI.

We used a pool of 280 unique questions contextual to our dataset and allowed each search service to return its 
top two results, truncated that context string to 600 characters, and then allowed a maximum response token 
count of 400. Responses generally ranged from 130 tokens to 180 tokens.

In each of our three user count scenarios, we ran the test three times and measured Azure OpenAI time between 
tokens by dividing the time in the Azure OpenAI call (the time, from the function’s perspective, spent from calling 
Azure OpenAI to receiving the last token streamed) by the number of response tokens. We observed that the 
Azure application had a better time between tokens rate (see Figure 4). While these sub-millisecond differences 
are small for our simple application, production AI apps with thousands of users would require many more 
tokens, compounding the total latency and leading to more noticeable time differences. 

For more details on application and scaling adjustments and configurations, please see the  
science behind the report.

Average time between tokens

Milliseconds  |  Lower is better

1 user
6.32

6.92

7.51

7.66

7.64

7.88

50 users

100 users

Application running on Azure

Application running on AWS

Figure 4: Average time between tokens in our LLM application for our three user scenarios. Source: PT.
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The cost impact of multi-cloud applications
Determining the full cost of an AI application deployed on any public cloud will depend on many different 
factors. CSPs charge for resources beyond just compute and storage costs. If you use the many useful AI services 
we did in our deployment, you will likely incur additional charges for tokens, number of endpoints, API access, 
data input/output, and more. These charges are manageable via tools and services from the CSPs. Because 
these factors vary so widely, we did not conduct a full TCO comparison between Azure and AWS. 

Additional costs considerations for deploying AI applications across multiple CSPs can include:

• Secure networking between the CSPs. In addition to the different networking costs for each CSP, you 
may need to pay extra to communicate between them, too. For example, to keep a dedicated, secure 
interconnect between the two CSPs can cost thousands per month.5 Using a public network IPsec VPN 
approach can also accrue data egress costs, though many CSPs are starting to reduce, waive, or remove 
egress costs.6 Since Azure OpenAI does not have automatic failover options, you may need to use two 
regions for high availability, which would mean two of these secure connections between the CSPs.7 

• Management overhead. Using two CSPs means doubling many of the services, tools, and features that 
need to be learned and managed. Two billing dashboards, two sets of security policies, two IAMs, different 
APIs...all of these things double the workload of the various administrators and IT employees managing 
them. This means less time spent on other initiatives and more salary spent on just maintaining your 
current applications and training to learn two or more platforms.

• Increased security risks can lead to expensive data breaches. According to IBM, the average global cost 
for companies that experienced data breaches in 2024 was $4.88M USD.8 Deploying across applications 
with different security standards, tools, and more can increase your risk of having a very costly data breach. 
In particular, agentic apps are open to wider threat vectors and need protection and control over resources 
they can access.

• Complicating optimization means wasted money on underused resources. When spanning multiple 
CSPs, visibility into utilization, cost tracking, and more declines. Without robust monitoring or third- party 
tools to span the gap, it’s easy to miss unused capacity or orphaned resources that accrue charges. 
According to one source, the average cost of cloud management platform tools is $50/mo.9 

By deploying your Azure OpenAI-dependent app entirely on Azure, you could save money, time, and effort 
compared to trying to juggle two CSPs at the same time, while also enjoying better performance.
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Securing your application
While AI applications deliver benefits, they can also introduce security headaches. In addition to the same 
security concerns as any other application, the amount and type of data many AI applications use can 
magnify security flaws. Your data may contain sensitive information, including private user data, business 
data, government data, or medical data. Whether to protect business and user interests or to conform to data 
sovereignty and compliance laws, protecting your AI data from breaches is a top priority. You need to ensure 
that your data is protected at rest, in motion, within the application, in the network, and more.

Though both AWS and Azure provide security features, hosting an application across multiple CSPs can 
heighten security concerns. Two CSPs means two Identity and Access Management (IAM) systems to configure 
to limit who has access to sensitive information. It means learning and leveraging two of every security feature 
relevant to your application and data, making sure that settings are accurate. You may end up with gaps in 
interoperability or governance and compliance. With two cloud GUIs, you must track and monitor threats across 
two environments without full visibility from either one. Resolving or avoiding these issues costs time, resources, 
and money—especially if third-party services to help with visibility or avoiding silos are required. Additionally, 
Microsoft’s security products, including Microsoft Entra ID, Microsoft Defender for Cloud, and Microsoft Purview, 
integrate with Azure AI Foundry, boosting the security posture of AI applications and agents.10

Conclusion
If your organization already hosts application components on AWS, adopting a multi-cloud approach to run AI 
workloads with Azure OpenAI might make sense. However, this strategy could introduce significant challenges—
ranging from managing multi-cloud networking and security to training teams on multiple consoles and APIs. 
Additionally, stitching together services from multiple cloud providers can result in higher costs, inefficiencies, 
and increased security risks. Performance could suffer, with your chatbot sluggishly delivering answers that could 
hurt customer satisfaction.

Adopting a single-cloud strategy with Azure and hosting your RAG AI app on Azure can optimize performance 
by bringing data closer to compute to give your users answers faster. In fact, running our app on Azure reduced 
end-to-end execution time by 59.7 percent compared to an AWS deployment. Also, in our tests, Azure provided 
a faster search service layer for our OpenAI RAG LLM, reducing Azure AI Search time by up to 88.8 percent 
compared to Amazon Kendra. In application configurations such as ours, the choice is clear: building and hosting 
your AI app on Azure the better strategy. It reduces complexity—which optimizes performance, saves money, 
and increases security compared to selecting a multi-cloud deployment. While we used a RAG-based AI app as 
an example, other more complex agentic AI applications could see similar benefits of a single-cloud strategy.
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