
The science behind the report:

Microsoft Azure Database for MySQL
delivered better performance and lower
price per performance than competing
Amazon Web Services (AWS) and Google
Cloud solutions

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Microsoft Azure Database for MySQL delivered better performance and
performance per performance than competing Amazon Web Services (AWS) and Google Cloud solutions.

We concluded our hands-on testing on October 13, 2023. During testing, we determined the appropriate
hardware and software configurations and applied updates as they became available. The results in this report
reflect configurations that we finalized on October 11, 2023 or earlier. Unavoidably, these configurations may not
represent the latest versions available when this report appears.

Our results
To learn more about how we have calculated the wins in this report, go to http://facts.pt/calculating-and-highlighting-wins.
Unless we state otherwise, we have followed the rules and principles we outline in that document.

Table 1: Results of our testing.

 Azure Database
for MySQL

Amazon Aurora™
MySQL

Amazon RDS
for MySQL

Google Cloud™ SQL for
MySQL

5-min runtime

128 threads

TPS 9,969.88 8,703.15 6,607.71 4,404.33

Avg. latency (ms) 12.84 14.71 19.37 29.06

256 threads

TPS 10,251.60 9,140.24 8,370.71 5,712.49

Avg. latency (ms) 24.97 28.00 30.58 44.80

10-min runtime

128 threads

TPS 9,996.74 8,565.33 7,101.09 4,714.79

Avg. latency (ms) 12.80 14.94 18.02 27.15

256 threads

TPS 10,324.25 9,101.28 8,532.13 5,955.9

Avg. latency (ms) 24.79 28.12 30.00 42.98

November 2023Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

A Principled Technologies report: Hands-on testing. Real-world results.

https://facts.pt/z5OCeh2
https://www.principledtechnologies.com
https://facts.pt/z5OCeh2
https://facts.pt/z5OCeh2
https://facts.pt/calculating-and-highlighting-wins

System configuration information
Table 2: Detailed information on the systems we tested.

System configuration information
Azure Database for MySQL – Flexible
Server instance

Amazon Aurora instance

Tested by Principled Technologies Principled Technologies

Test date 10/12/2023 10/11/2023

CSP / region West US 3 (Zone 1) us-west-2d

Workload and version Sysbench 1.0.18 Sysbench 1.0.18

Workload specific parameters
20 tables, 20M rows per table, 128 and
256 threads, 5 and 10 minute tests,
70/30 R/W ratio OLTP

20 tables, 20M rows per table, 128 and
256 threads, 5 and 10 minute tests,
70/30 R/W ratio OLTP

Iterations and result choice Three runs, median Three runs, median

Server platform Standard_E32ds_v5 db.r6i.8xlarge

SQL version MySQL 8.0.32 Aurora MySQL 3.04.0 (compatible with
MySQL 8.0.28)

Date of last OS updates/patches applied 10/11/2023 10/11/2023

Processor

Number of vCPU 32 32

Vendor and model Intel® Xeon® Platinum 8370C Intel Xeon Ice Platinum 8375C

Core count (per processor) 32 32

Core frequency (GHz) 2.80 2.90

Stepping 6 6

Hyper-threading Yes Yes

Turbo Yes Yes

Memory module(s)

Total memory in system (GB) 256 256

Data drive

Number of drives 1 1

Drive size (GB) 256 Unavailable

Drive information (speed, interface, type) Auto-IOPS I/O-Optimized

November 2023 | 2Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

Table 3: Detailed information on the systems we tested.

System configuration information Amazon RDS instance Google Cloud MySQL Instance

Tested by Principled Technologies Principled Technologies

Test date 10/12/2023 10/13/2023

CSP / region us-west-2d us-west3-b

Workload and version Sysbench 1.0.18 Sysbench 1.0.18

Workload specific parameters
20 tables, 20M rows per table, 128 and
256 threads, 5 and 10 minute tests,
70/30 R/W ratio OLTP

20 tables, 20M rows per table, 128 and
256 threads, 5 and 10 minute tests,
70/30 R/W ratio OLTP

Iterations and result choice Three runs, median Three runs, median

Server platform db.r6i.8xlarge db-perf-optimized-N-32

SQL version MySQL 8.0.34 MySQL 8.0.34

Date of last OS updates/patches applied 10/11/2023 10/11/2023

Processor

Number of vCPU 32 32

Vendor and model Intel Xeon Ice Platinum 8375C undisclosed

Core count (per processor) 32 undisclosed

Core frequency (GHz) 2.90 undisclosed

Stepping 6 undisclosed

Hyper-threading Yes undisclosed

Turbo Yes undisclosed

Memory module(s)

Total memory in system (GB) 256 256

Data drive

Number of drives 1 1

Drive size (GB) 800 2,500

Drive information (speed, interface, type) io1, 40,000 IOPS SSD, 60,000 IOPS

November 2023 | 3Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

How we tested
For the Azure solution, we deployed a 32vCore Business Critical Azure Database for MySQL - Flexible Server instance (Standard_E32ds_v5)
with a 256GB volume. We enabled Auto-IOPS and storage autogrowth.

For the Amazon Aurora and Amazon RDS solutions, we used a db.r6i.8xlarge instance. For Aurora, we set the storage to I/O-Optimized and
enabled storage autogrowth. For RDS, we attached an 800GB io1 volume that supported up to 40,000 IOPS, the maximum available IOPS
for the instance type.

For Google Cloud MySQL, we deployed a 32vCore instance on the Enterprise Plus SKU (db-perf-optimized-N-32), with a 2,500GB SSD
volume with storage autogrowth enabled. This increased volume size allowed us to utilize the instance’s maximum disk IOPS of 60,000 and
throughput of 1200 MBps.

However, each of these services provided additional data-caching local SSDs, which allowed these instances to exceed their stated per-
instance limits.

We compared the OLTP performance from sysbench 1.0.18. We sized the database to have 20 tables with 20 million rows each, running the
70/30 read/write workload at 128 and 256 threads on each of the managed database services (Azure Database for MySQL - Flexible Server,
Amazon Aurora, Amazon RDS, and Google Cloud MySQL).

While testing, we used mostly out-of-the-box parameters with a few exceptions that we set to match across the different offerings. For
all solutions, we set max_prepared_stmt_count to 655,350, enabled log_bin (this parameter is ON by default when users enable
automated backups and point-in-time-restores), and set binlog_format = ROW. We set the innodb_redo_log_capacity to
536,870,912 where applicable (Amazon Aurora does not allow users to change this setting, and Google Cloud MySQL uses the pre-MySQL
8.0.31 setting innodb_log_file_size in conjunction with innodb_log_file_count. For the Google Cloud solution, the innodb_log_
file_count is 2, so we set the innodb_log_file_size to 268,435,456 to give a product equal to the innodb_log_redo_capacity
(specified above). Additionally, we set the innodb_buffer_pool_size to the maximum allowed value on each service: 75 percent of the
total memory capacity for Azure and both Amazon offerings, and 72 percent of the total memory capacity for Google Cloud.

Setting up the MySQL Flexible Server environment on Azure

Creating the client VM
1. Log into the Azure Portal, and navigate to the Virtual Machines service.
2. To open the Add VM wizard, click Add.
3. On the Basics tab, set the following:

a. Choose your Subscription from the dropdown menu.
b. Choose your Resource group from the dropdown menu.
c. Name the Virtual Machine.
d. Choose your Region from the dropdown menu. We used West US 3.
e. Under Availability options, choose your Availability zone. We used Zone 1.
f. Under the Image dropdown menu, choose Ubuntu 20.04 LTS.
g. Under VM architecture, select x64.
h. Leave Azure Spot instance set to No.
i. Select the instance size you wish to use; we used Standard D32ds_v5.
j. Keep the Authentication type set to SSH public key.
k. Choose a Username and Key pair name, and select generate a new key pair.
l. Leave Public inbound ports set to Allow selected ports.
m. For Select inbound ports, choose SSH (22).
n. Click Next: Disks.

4. On the Disks tab, set the following:

a. For the OS disk size, select 30GB.
b. For the OS disk type, choose Standard SSD from the dropdown menu.
c. Leave the default Encryption type.
d. Click Next: Networking.

5. On the Networking tab, set the following:

a. Leave all settings as default.
b. Ensure the checkbox for accelerated networking is enabled.
c. Click Next: Management.

November 2023 | 4Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

6. On the Management tab, leave all defaults.
7. On the Advanced tab, leave all defaults.
8. On the Tags tab, add any tags you wish to use.
9. On the Review + create tab, review your settings, and click Create.

Creating the Azure Database for MySQL - Flexible Server Instance
1. Log into the Azure Portal, and navigate to the Azure Database for MySQL flexible servers service.
2. Click Create, and select Flexible Server.
3. Select your Subscription and Resource group.
4. Enter a name for the instance, and select the region in which you wish to work. We used West US 3.
5. For the MySQL version, select 8.0.
6. For the Workload type, select Tier 1 Business Critical Workloads.
7. Under Compute + storage, click Configure server.

a. Compute tier: Business Critical
b. Compute processor: Intel
c. Compute size: Standard_E32ds_v5
d. Storage size (in GiB): 256
e. IOPS: Auto scale IOPS
f. Storage Auto-growth: Enabled
g. Enable high availability: Disabled
h. Backup retention period (in days): 7
i. Geo-redundancy: Disabled

8. Click Save to continue.
9. Choose your Availability zone. We used Zone 1.
10. Under Authentication method, select MySQL authentication only, and enter a username and password.
11. Click Next: Networking.
12. On the Networking tab, set the following:

a. Connectivity method: Public access (allowed IP addresses) and Private endpoint
b. Public access: enabled
c. Add a firewall rule with your Ubuntu client IP
d. Click Next: Security

13. On the Security tab, leave all defaults.
14. On the Tags tab, add any tags you wish to use.
15. On the Review + create tab, review your settings, and click Create.

Setting up RDS environment on AWS

Creating the MySQL 8.0 Parameter Group
1. Log into AWS, and navigate to the AWS Management Console.
2. Click RDS.
3. In the left pane, click Parameter groups.
4. Click Create parameter group.
5. Under Parameter group family, select mysql8.0.
6. Under Type, select DB Parameter Group.
7. Give the group a name and description.
8. Click Create.
9. Click into your newly created parameter group, and click Edit in the top right corner.
10. Search for and change the following parameters:

binlog_format = ROW

innodb_redo_log_capacity = 536870912

max_prepared_stmt_count = 655350

11. Click Save Changes.

November 2023 | 5Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

Creating the client instance
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. Click Launch instance, and to open the Launch Instance in the dropdown wizard, click Launch instance.
4. Name the instance, and add any tags you wish to use.
5. Under Quick Start, click Ubuntu.
6. Under Amazon Machine Image (AMI), select Ubuntu Server 20.04 LTS (HVM), SSD Volume Type.
7. Keep the Architecture set to x86.
8. Under Instance Type, select m6i.8xlarge.
9. Under key pair (login), click Create key pair:

a. Enter a key pair name.
b. Leave RSA and .pem selected, and click Create key pair.

10. Next to Network settings, click Edit:

a. Leave the default VPC selected.
b. Choose your subnet. We selected us-west-2d.
c. Leave Auto-assign public IP enabled.
d. Under Firewall (security groups), select Create security group.
e. Name the group, and give it a description.
f. Ensure that there is an inbound rule for ssh over TCP on port 22, and click Configure storage.

11. Set the root volume to 30GiB on gp2 storage, and click Launch Instance.

Editing the Security Group inbound rules
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. In the left pane, select Security Groups.
4. Click into your newly created Security group.
5. Click Edit inbound rules.
6. Click Add rule, and set the following:

a. Type: All traffic
b. Source: CustomSecurity Groups[your security group]

7. Click Save rules.

Creating the RDS MySQL instance
1. Log into AWS, and navigate to the AWS Management Console.
2. Click RDS.
3. Under Create database, click Create database.
4. Leave the database creation method as Standard create.
5. Under Engine options, select MySQL.
6. Under Engine Version, choose your MySQL major and minor version. We selected 8.0.34.
7. Under Templates, select Dev/Test.
8. Under Availability and durability, leave Single DB instance selected.
9. Name the instance.
10. Select a Master username and password.
11. Under Instance configuration, select Memory optimized classes, and choose db.r6i.8xlarge.
12. Under Storage, select Provisioned IOPS SSD (io1) with 800GB and 40,000 provisioned IOPS (the instance maximum).
13. Leave storage autoscaling enabled.
14. Under Networking, leave Compute resource, Network type, VPC, and DB subnet group with default settings.
15. Enable Public access.
16. Choose existing VPC security group, and select the previously created group.
17. Select your Availability zone. We used us-west-2d.
18. Leave Database authentication and Monitoring options set to default.
19. Under Additional configuration, set database parameter group to the group that you created in the Creating the MySQL 8.0

Parameter Group section.
20. Leave Backup, Encryption, and Maintenance options set to default, and click Create Database.

November 2023 | 6Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

Setting up Aurora environment on AWS

Note: we used the same AWS client for both RDS and Aurora, so we did not repeat the instructions for creating an AWS client in this section.

Creating the Amazon Aurora 3.04.0 Parameter Groups (instance and cluster)
1. Log into AWS, and navigate to the AWS Management Console.
2. Click RDS.
3. In the left pane, click Parameter groups.
4. Click Create parameter group.
5. Under Parameter group family, select aurora-mysql8.0.
6. Under Type, select DB Parameter Group.
7. Enter a name and description for the group.
8. Click Create.
9. Click into your newly created instance parameter group, and click Edit in the top right corner.
10. Search for and change the following parameter:

max_prepared_stmt_count = 655350

11. Click Save Changes.
12. Repeat steps 4 and 5.
13. Under Type, select DB Cluster Parameter Group.
14. Enter a name and description for the group.
15. Click Create.
16. Click into the newly created cluster parameter group, and click Edit in the top right corner.
17. Search for and change the following parameters:

binlog_format = ROW

max_prepared_stmt_count = 655350

18. Click Save Changes.

Creating the Aurora (MySQL Compatible) instance
1. Log into AWS, and navigate to the AWS Management Console.
2. Click RDS.
3. Under Create database, click Create database.
4. Leave the database creation method as Standard create.
5. Under Engine options, select Aurora (MySQL Compatible).
6. Under Available versions, choose your Aurora major and minor version. We selected Aurora MySQL 3.04.0 (compatible with MySQL

8.0.28), the latest available version at the time of testing.
7. Under Templates, select Dev/Test.
8. Name the instance.
9. Select a Master username and password.
10. Under Cluster storage configuration, select Aurora I/O-Optimized.
11. Under Instance configuration, select Memory optimized classes, and choose db.r6i.8xlarge.
12. Under Multi-AZ deployment, leave Don’t create an Aurora Replica selected.
13. Under Networking, leave Compute resource, Network type, VPC, and DB subnet group with default settings.
14. Enable Public access.
15. Choose existing VPC security group, and select the previously created group.
16. Select your Availability zone. We used us-west-2d.
17. Leave Database authentication and Monitoring options set to default.
18. Under Additional configuration, set DB cluster parameter group and DB parameter group to the respective groups created in the

Creating the Amazon Aurora 3.04.0 Parameter Groups section.
19. Leave Backup, Encryption, and Maintenance options set to default, and click Create Database.

November 2023 | 7Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

Setting up Google Cloud MySQL environment on Google Cloud

Creating the client instance
1. Log into Google Cloud, and navigate to the Console.
2. Click the Navigation menu, and select Compute EngineVM instances.
3. Click Create Instance.
4. Name the instance.
5. Select your region and zone. We used us-west3-b.
6. Under Machine configuration, select N2.
7. Under Machine type, choose n2-standard-32.
8. Under Boot disk, click Change, and set the following options:

a. Operating system: Ubuntu
b. Version: Ubuntu 20.04 LTS
c. Boot disk type: SSD persistent disk
d. Size (GB): 30

9. Leave Service account and Access scopes set to default.
10. Under Firewall, select Allow HTTP traffic and Allow HTTPS traffic.
11. Leave the remaining options default, and click Create.

Creating the Google Cloud MySQL Instance
1. Log into Google Cloud, and navigate to the Console.
2. Click the Navigation menu, and select SQL.
3. Click Create Instance.
4. Click Choose MySQL.
5. Name the instance, and set a password for the root user.
6. Under Database version, select MySQL 8.0.
7. Click Show Minor Versions, and select MySQL 8.0.34 from the dropdown menu.
8. Under Choose a Cloud SQL edition, select EnterprisePlus.
9. Under preset edition, select Development.
10. Select your region. We used us-west3.
11. Leave Zonal availability set to Single zone.
12. Click Specify zones and select your AZ. We used us-west3-b.
13. Click Machine configuration, and select 32 vCPU, 256GB.
14. Leave data cache enabled.
15. Under Storage type, select SSD.
16. Under Storage capacity, select custom, and input 2,500GB to utilize the maximum IOPS and throughput for the instance.
17. Leave automatic storage increase enabled.
18. Under Connections, ensure that Public IP is checked.
19. Under Authorized networks, click Add a Network, then add a rule with your client VM IP.
20. Under Data Protection, leave Automatic daily backups and point-in-time recovery enabled, and disable deletion protection.
21. Under Flags, add the following flags:

innodb_buffer_pool_size = 197912092999

innodb_log_file_size = 268435456

max_prepared_stmt_count = 655350

22. Under Labels, add any labels you wish to use.
23. Click Create Instance.

November 2023 | 8Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

Configuring Ubuntu 20.04 LTS client (all solutions)

Configuring Ubuntu 20.04 LTS client
1. SSH into the Ubuntu client VM.
2. Run updates and upgrade:

sudo apt-get update

sudo apt-get upgrade -y

3. Install required packages (Sysbench and MySQL client tools):

sudo apt-get install sysbench -y

sudo apt-get install mysql-client -y

Creating and preparing the test database (all solutions)

Creating the database
1. SSH into the Ubuntu client VM.
2. Connect to the MySQL instance:

mysql -h [mysql-instance-name] -u [username] -p

3. Enter your password.
4. Create a database called testdb:

CREATE DATABASE testdb;

5. Exit MySQL:

exit;

Preparing the database
1. Navigate to the sysbench folder:

cd /usr/share/sysbench

2. Run the sysbench prepare statement with 20 tables and 20 million rows per table:

date ; sysbench oltp_write_only.lua --tables=20 --table-size=20000000 --threads=20 --time=720000
--mysql-host=[mysql-instance-name] --mysql-db=testdb --mysql-user=[username] --mysql-
password=’[password]’ --mysql-port=3306 --report-interval=10 --percentile=99 prepare ; date

3. After completing the data insertion, wait 20 minutes for background tasks to complete.

November 2023 | 9Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

This project was commissioned by Microsoft.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

Running the tests
4. On the client system, navigate to the sysbench folder:

cd /usr/share/sysbench

5. Run the sysbench 70/30 read/write workload for 30 minutes at 256 threads as a warmup:

sysbench oltp_read_write.lua --tables=20 --table-size=20000000 --db-driver=mysql --threads=256
--time=1800 --mysql-host=[mysql-instance-name] --mysql-db=testdb --mysql-user=[username] --mysql-
password=’[password]’ --mysql-port=3306 --report-interval=1 --percentile=99 run | tee ~/warmup.log

6. Reboot the client VM.
7. Return to the sysbench folder:

cd /usr/share/sysbench

8. Set the ulimit to two times the amount of threads to be tested:

ulimit -n =[threads x2]

9. Run the 70/30 read/write workload for five minutes at 128 and 256 threads, and for 10 minutes at the same thread sizes. Complete
steps 3 through 5 after each test at a particular thread size and runtime.

10. Complete step 6 two more times, and collect the median results.

Read the report at https://facts.pt/z5OCeh2

November 2023 | 10Microsoft Azure Database for MySQL delivered better performance and lower price per
performance than competing Amazon Web Services (AWS) and Google Cloud solutions

https://www.principledtechnologies.com
https://facts.pt/z5OCeh2

	Our results
	System configuration information
	How we tested
	Setting up the MySQL Flexible Server environment on Azure
	Creating the client VM
	Creating the Azure Database for MySQL - Flexible Server Instance

	Setting up RDS environment on AWS
	Creating the MySQL 8.0 Parameter Group
	Creating the client instance
	Editing the Security Group inbound rules
	Creating the RDS MySQL instance

	Setting up Aurora environment on AWS
	Creating the Amazon Aurora 3.04.0 Parameter Groups (instance and cluster)
	Creating the Aurora (MySQL Compatible) instance

	Setting up Google Cloud MySQL environment on Google Cloud
	Creating the client instance
	Creating the Google Cloud MySQL Instance

	Configuring Ubuntu 20.04 LTS client (all solutions)
	Configuring Ubuntu 20.04 LTS client

	Creating and preparing the test database (all solutions)
	Creating the database
	Preparing the database

	Running the tests

