
Get lower latency for
NoSQL workloads in
the cloud with Azure
Cosmos DB for NoSQL
Azure Cosmos DB delivered
lower latency at a lower solution cost
in most cases than Amazon DynamoDB

Organizations that rely on NoSQL databases can offer
users a better experience by choosing a cloud solution
that responds more quickly to requests—or, in other
words, has lower latency. In addition to providing
faster response times to users, cloud solutions with
lower latency can help to reduce costs by consuming
fewer resources to process the same workload. We
used the Yahoo! Cloud Serving Benchmark (YCSB) to
measure the 95th and 99th percentile latency of two fully
managed, NoSQL database service cloud solutions:
Azure Cosmos DB and Amazon DynamoDB.

We tested both solutions using workload profiles
targeting 10,000, 30,000, and 50,000 operations
per second (OPS). We assessed the latency of both
solutions with a read-only profile, a write-only profile,
an updates-only profile, and a mixed profile of 90
percent reads and 10 percent writes. The Azure
Cosmos DB solution outperformed the DynamoDB
solution in every test at the 99th percentile and in all
but one test at the 95th percentile, where the difference
was statistically insignificant. To demonstrate the large-
scale capabilities of the Azure Cosmos DB solution,
we measured its latency at 1 million OPS and found it
offered 3.15 ms latencies (100 percent read) and 12.8
ms latencies (100 percent write) at the 99th percentile.
Lastly, using publicly available cost information from
each service’s deployment wizards, we calculated
the hourly rates of both solutions for each test and
found that the Azure Cosmos DB solution was more
affordable than the Amazon DynamoDB solution for all
but two workloads. In the two instances where Azure
Cosmos DB was less affordable, it offered an average
of 74.5 percent better 99th percentile latency at an
average cost that was only 24.5 percent higher.

83%
lower latencies*

for a workload of 100% read
operations at a target rate of

10,000 OPS

54%
lower latencies*

for a workload of 100%
update operations at a target

rate of 30,000 OPS

3.15 ms latencies*
(100% read) and

12.8 ms latencies*
(100% write)

at a target rate of
1,000,000 OPS

75% lower read
latencies* and 54%

lower write latencies*

for a mixed workload of
90% read and 10% write

operations at a target rate
of 50,000 OPS

*at the 99th percentile.

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)

A Principled Technologies report: Hands-on testing. Real-world results.

https://www.principledtechnologies.com

How we tested
We created each database and provisioned them with
a limit on the resources they could consume. We used
the YCSB workload and measured the full transaction
latencies for one hour. For the cost calculations, the
database charges depend on the resource limit we
provisioned, so to estimate the cost of performing
each workload at the target, we chose resource limits
large enough to perform the workload with a small
amount of additional resources as headroom. We
recorded the database charges that each cloud’s
provisioning tool provided.

To measure the latency of Azure Cosmos DB for
NoSQL, we established a resource group, an Azure
Cosmos DB account, and a database using the Azure
portal. For each workload, we created a container (akin
to a SQL table) in the database with a resource setting
large enough to handle the workload’s I/O. We created
the database in provisioned mode, which fixes the
maximum rate at which your application can consume
request units (RUs). RUs are a measure of the computer
resources/costs an application uses to perform one
database operation on one KB of data. We set the RU
rate to the appropriate value we found in the Azure DB
benchmarking repository; it allowed enough headroom
to sustain the target OPS for each workload.1 For the
specific configurations we used for each workload,
see the science behind the report. To run the YCSB
workload, we used the testing framework from a

forked copy (an independent copy) of the GitHub
repository.2 Each workload used an Azure template to
create one client VM, install YCSB, compile the Azure
Cosmos DB for NoSQL driver, execute the load and
run phases of the workload, and copy the results to an
Azure Blob storage. All database and client resources
for this testing were in the East US Azure region.

To measure the latency of DynamoDB on AWS, we
created a DynamoDB table using the AWS portal. For
each workload, we set the maximum read capacity
units (RCUs) and maximum write capacity units (WCUs)
to match the workload’s target rate. We used the
DynamoDB capacity calculator to estimate the RCU
and WCU needed for the workload, and added an
additional 2,000 capacity units/s for headroom. We
found that this headroom sufficed to eliminate failed
updates and insertions. You can find the specific
RCUs and WCUs we used for each workload in the
science behind the report. We created one client VM,
running Ubuntu 22.04 on x86-64, with sufficient CPU
resources (threads) to drive the database at the target
rates. We installed YCSB 0.17.0 on the VM and we
compiled the DynamoDB driver with Java 8 (build
351). We then executed the load and run phases of the
workload from the Linux command line. All database
and client resources for this testing were in the
us-east-1 AWS region.

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)
| 2

https://facts.pt/YqsF4MH
https://facts.pt/YqsF4MH

About Microsoft Azure Cosmos DB

According to Microsoft, Azure Cosmos DB is
a “fully managed and serverless distributed
database.”3 A serverless solution with no
minimum charges, Azure Cosmos DB allows
organizations to run NoSQL workloads with
unpredictable traffic and pay for only the
resources they use.

To learn more about Microsoft Azure Cosmos
DB, visit https://azure.microsoft.com/en-us/
products/cosmos-db.

Figure 1: The latencies, in milliseconds, of the solutions at a target rate of 10,000 OPS. Lower is better. Source: Principled Technologies.

Target OPS 10,000
Latency results: lower is better

95th percentile 99th percentile

100% read latency (ms) 74.5% lower

0.1% higher

26.7% lower

83.9% lower

37.7% lower

62.2% lower

Azure Cosmos DB
1.493

5.863
Amazon DynamoDB

100% write latency (ms)

100% update latency (ms)

100% read latency (ms)

100% write latency (ms)

100% update latency (ms)

Azure Cosmos DB
7.391

7.379
Amazon DynamoDB

Azure Cosmos DB
6.295

8.591
Amazon DynamoDB

Azure Cosmos DB
1.921

11.943
Amazon DynamoDB

Azure Cosmos DB
8.927

14.335
Amazon DynamoDB

Azure Cosmos DB
7.255

19.215
Amazon DynamoDB

Lower latency at 10K OPS
Using YCSB, we measured the latency of both
solutions for 100 percent read, write, and update
workloads at a target rate of 10,000 OPS. The
YCSB client measures the latency, which is the
time between the start of the client’s request
and the time the client receives the last response
from the database server. The Azure Cosmos DB
solution offered lower latencies in all the workloads
we tested at a target rate of 10,000 OPS except
in one instance, where the Azure solution was a
statistically insignificant 0.1 percent higher than the
Amazon DynamoDB solution. With a 100 percent
read workload, the Azure Cosmos DB solution
provided 83.9 percent lower latency at the 99th
percentile than the Amazon DynamoDB solution.

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)
| 3

https://azure.microsoft.com/en-us/products/cosmos-db
https://azure.microsoft.com/en-us/products/cosmos-db

Lower latency at 30K OPS
The next series of tests measured the latency
of the two solutions for 100 percent read,
write, and update workloads at a target rate of
30,000 OPS. The Azure Cosmos DB solution
offered lower latencies at the 95th and 99th
percentile for every workload we tested. On a
100 percent update workload, Azure Cosmos
DB provided 54.6 percent lower latency
than the Amazon DynamoDB solution at the
99th percentile.

About the Yahoo! Cloud
Serving Benchmark

Yahoo! developed the Yahoo! Cloud Serving
Benchmark to evaluate the performance of cloud
solutions using a common set of workloads.
According to Yahoo!, “the core workloads provide
a well-rounded picture of a system’s performance”
and the YCSB Client “is extensible so that you can
define new and different workloads to examine
system aspects, or application scenarios, not
adequately covered by the core workload.”4

YCSB supports five operations in a workload:
• Read: query a complete record
• Write: insert a complete record
• Update: change some of the fields in an

existing record
• Scan: query a small range of records
• Read-Modify-Write: query a complete record,

change part of it, and write it back

Figure 2: The latencies, in milliseconds, of the solutions at a target rate of 30,000 OPS. Lower is better. Source: Principled Technologies.

Target OPS 30,000
Latency results: lower is better

95th percentile 99th percentile

100% read latency (ms)

Azure Cosmos DB
1.973

5.827
Amazon DynamoDB

100% write latency (ms)

100% update latency (ms)

100% read latency (ms)

100% write latency (ms)

100% update latency (ms)

Azure Cosmos DB
7.383

8.087
Amazon DynamoDB

Azure Cosmos DB
6.267

8.383
Amazon DynamoDB

Azure Cosmos DB
2.707

11.087
Amazon DynamoDB

Azure Cosmos DB
9.311

16.575
Amazon DynamoDB

Azure Cosmos DB
7.331

16.151
Amazon DynamoDB

66.1% lower

8.7% lower

25.2% lower

75.5% lower

43.8% lower

54.6% lower

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)
| 4

Lower latency at 50K OPS
We measured the latency of the two solutions for 100 percent read, write, and update workloads at a target
rate of 50,000 OPS and found that the Azure Cosmos DB solution offered lower latencies than the Amazon
DynamoDB solution in every instance. Testing the latency of 100 percent read, write, and update workloads
provides insight into the performance of the solutions, but to understand how the solutions might perform in
a more real-world scenario, we also measured a mixed workload of 90 percent read operations and 10 percent
write operations at a target rate of 50,000 OPS. The Azure Cosmos DB solution offered 75.9 less 99th percentile
read latency and 54.1 less 99th percentile write latency than the Amazon DynamoDB solution at a target rate
of 50,000 OPS.

Figure 3: The latencies, in milliseconds, of the solutions at a target rate of 50,000 OPS. Lower is better. Source: Principled Technologies.

Figure 4: The latencies, in milliseconds, of the solutions at a target rate of 50,000 OPS. Lower is better. Source: Principled Technologies.

Target OPS 50,000
Latency results: lower is better

95th percentile 99th percentile

100% read latency (ms)

Azure Cosmos DB
1.593

5.811
Amazon DynamoDB

100% write latency (ms)

100% update latency (ms)

100% read latency (ms)

100% write latency (ms)

100% update latency (ms)

Azure Cosmos DB
8.119

8.583
Amazon DynamoDB

Azure Cosmos DB
6.415

7.811
Amazon DynamoDB

Azure Cosmos DB
3.055

11.535
Amazon DynamoDB

Azure Cosmos DB
10.519

17.119
Amazon DynamoDB

Azure Cosmos DB
8.919

15.919
Amazon DynamoDB

72.5% lower

5.4% lower

17.8% lower

73.5% lower

38.5% lower

43.9% lower

Target OPS 50,000
Latency results: lower is better

95th percentile 99th percentile

90% read latency (ms)

Azure Cosmos DB
2.113

5.979
Amazon DynamoDB

10% write latency (ms)

Azure Cosmos DB
6.055

8.335
Amazon DynamoDB

Azure Cosmos DB
3.137

13.039
Amazon DynamoDB

Azure Cosmos DB
7.659

16.719
Amazon DynamoDB

64.6% lower

27.3% lower

75.9% lower

54.1% lower

90% read latency (ms)

10% write latency (ms)

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)
| 5

Lower costs per hour with Azure Cosmos DB
Higher performance often is available only at a higher price. To evaluate whether this was true in our tests, we
calculated the costs per hour of each solution running the workloads we tested for latency. We wanted to focus
on the cost of the services themselves, so these estimates are for using the database services we provisioned and
do not include the costs for resources the client used running the YCSB benchmark or resources the database
drivers used running on the client (e.g., the number of CPU cores). The Azure Cosmos DB container creation tool
provided the costs of the Azure Cosmos DB solution. The Amazon DynamoDB deployment tool provided the
costs of the Amazon DynamoDB solution. We found that the Azure Cosmos DB solution cost less per hour in all
but two instances: the hourly cost of the 100 percent read workloads at target rates of 30,000 OPS and 50,000
OPS was an average of 24.5 percent higher for the Azure Cosmos DB solution, but the average latency was 74.5
percent lower (better) at the 99th percentile.

Table 1: The cost in dollars/hour of each solution at a target rate of 10,000 OPS. Lower is better. Source: Principled Technologies.

Target OPS 10,000

Azure Cosmos DB Amazon DynamoDB Percentage savings

100% read $0.96 $0.99 3.03%

100% write $10.40 $14.71 29.29%

100% update $12.95 $15.50 16.45%

Table 2: The cost in dollars/hour of each solution at a target rate of 30,000 OPS. Lower is better. Source: Principled Technologies.

Target OPS 30,000

Azure Cosmos DB Amazon DynamoDB Percentage savings

100% read $2.88 $2.32 -24.13%

100% write $31.20 $41.21 24.29%

100% update $38.86 $43.33 10.31%

Table 3: The cost in dollars/hour of each solution at a target rate of 50,000 OPS. Lower is better. Source: Principled Technologies.

Target OPS 50,000

Azure Cosmos DB Amazon DynamoDB Percentage savings

100% read $4.80 $3.84 -25.00%

100% write $52.00 $67.70 23.19%

100% update $64.75 $71.15 8.99%

90% read and 10% write $8.00 $10.33 22.55%

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)
| 6

Azure Cosmos DB performance at 1 million OPS

Applications such as financial trading and real-time
analytics require high throughput and low response
times to provide near-instantaneous processing.

To get a better understanding of the latency of Azure
Cosmos DB at a large scale, we measured the latency
of the solution for 100 percent read and 100 percent
write operations at a target rate of 1,000,000 OPS.
This target rate for one hour is a scaling goal other
groups have used.5,6,7

The Azure Cosmos DB solution achieved a 99th
percentile latency of 3.15 ms for the 100 percent
read workload and 12.8 ms for the 100 percent write
workload. Comparing these response times to the
response times in the 50,000 OPS test, we see a

similar read latency and only a 2.3 ms increase in the
write latency. These results suggest that Azure Cosmos
DB can scale to handle even the largest workload
needs even at an unusually large scale with 100
percent writes at 1,000,000 OPS.

Table 4: The 95th and 99th percentile latencies in milliseconds for
database transactions for each workload. Median of three runs.
Lower is better. Source: Principled Technologies.

Azure Cosmos DB 1,000,000 OPS

Workload 100%
reads

100%
writes

95th percentile 2.134 9.097

99th percentile 3.152 12.877

Conclusion
When we compared the latency of Azure Cosmos DB to that of Amazon DynamoDB, we found that the Azure Cosmos
DB solution outperformed the Amazon DynamoDB solution in all but one instance, where the difference was statistically
insignificant. Plus, we found that the Azure Cosmos DB solution was more affordable than the Amazon DynamoDB
solution in most instances. In the two instances where the Amazon DynamoDB solution was cheaper, the Azure
Cosmos DB solution provided better latency processing those workloads. At a target rate of 1,000,000 OPS the Azure
Cosmos DB solution offered 3.15 ms latencies (100 percent read) and 12.8 ms latencies (100 percent write) at the 99th
percentile, which suggests that the solution can efficiently scale and handle a high number of queries with minimal delay
or interruption.

1. GitHub, “SQL(Core) API,” accessed April 6, 2023,
https://github.com/Azure/azure-db-benchmarking/blob/main/cosmos/sql/tools/java/ycsb/recipes/.

2. GitHub, “Benchmarking Framework For Azure Databases,” accessed April 6, 2023,
https://github.com/Azure/azure-db-benchmarking/.

3. Microsoft, “Azure Cosmos DB,” accessed March 30, 2023, https://azure.microsoft.com/en-us/products/cosmos-db.

4. Yahoo!, “Yahoo Cloud Serving Benchmark,” accessed March 30, 2023,
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/.

5. Jonah Berquist, “One million queries per second with MySQL,” accessed April 7, 2023,
https://planetscale.com/blog/one-million-queries-per-second-with-mysql.

6. Douglas Hood, “Scaling SQL to millions of trans-
actions per second with a single database,” ac-
cessed April 7, 2023, https://www.linkedin.com/
pulse/scaling-sql-millions-transactions-per-sec-
ond-single-database-hood.

7. Christos Kalantzis, “Revisiting 1 Million Writes
per second,” accessed April 7, 2023, https://
netflixtechblog.com/revisiting-1-million-writes-
per-second-c191a84864cc.

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.
For additional information, review the science behind this report.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

This project was commissioned by Microsoft.

Read the science behind this report at https://facts.pt/YqsF4MH

Get lower latency for NoSQL workloads in the cloud with Azure Cosmos DB for NoSQL May 2023 (Revised)
| 7

https://github.com/Azure/azure-db-benchmarking/blob/main/cosmos/sql/tools/java/ycsb/recipes/
https://github.com/Azure/azure-db-benchmarking/
https://azure.microsoft.com/en-us/products/cosmos-db
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/
https://planetscale.com/blog/one-million-queries-per-second-with-mysql
https://www.linkedin.com/pulse/scaling-sql-millions-transactions-per-second-single-database-hood
https://www.linkedin.com/pulse/scaling-sql-millions-transactions-per-second-single-database-hood
https://www.linkedin.com/pulse/scaling-sql-millions-transactions-per-second-single-database-hood
https://netflixtechblog.com/revisiting-1-million-writes-per-second-c191a84864cc
https://netflixtechblog.com/revisiting-1-million-writes-per-second-c191a84864cc
https://netflixtechblog.com/revisiting-1-million-writes-per-second-c191a84864cc
https://www.principledtechnologies.com
https://facts.pt/YqsF4MH

