
The science behind the report:

Build an Azure OpenAI
application using your own
enterprise data

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Build an Azure OpenAI application using your own enterprise data.

We concluded our hands-on testing on November 11, 2023. During testing, we determined the appropriate
hardware and software configurations and applied updates as they became available. The results in this report
reflect configurations that we finalized on November 11, 2023 or earlier. Unavoidably, these configurations may
not represent the latest versions available when this report appears.

How we tested
We created a set of five Azure VMs and one Azure Cosmos DB container in its own resource in the same region in which we deployed the
AI-assisted chatbot. We used one VM to deploy the chatbot and four VMs as testing platforms. The container held a copy of the property-
listings data. At deployment, the script copied the data into the application’s Azure Cosmos DB dataset, and once the chatbot started, one
chatbot process sent the data to the Azure AI Search vector database for ingest and indexing.

Requesting access to Azure Open AI Service

Before you can use Azure OpenAI Service, you must request access with Azure. You must also choose an Azure region in which to run the
chatbot. This region must support Azure OpenAI text services. See “Azure OpenAI Service models” at https://learn.microsoft.com/en-us/
azure/ai-services/openai/concepts/models for a list of each region’s capabilities.

1. Go to the form Request Access to Azure OpenAI Service at https://aka.ms/oai/access.
2. Provide your company details, subscription, and account information.
3. Select the OpenAI feature Text and code models.
4. Azure will send notification of approval by email.

Installing prerequisites for deployment and testing of the AI-assisted chatbot
1. Create the Azure resource group for deployment and testing:

a. In the Azure Portal, click Resource groups.
b. Click Create.
c. Enter the group name, and select the region.
d. Click Review + create.
e. Click Create.

2. Create the Azure Cosmos DB account and database for the local copy of the property-listing data:

a. In the Azure portal, go to the new resource group’s dashboard, and click Create.
b. Select Azure Cosmos DB, and click Create.
c. On the Azure Cosmos DB for NoSQL panel, click Create.
d. Enter the Account name, and select the Location.
e. Click Review + create.

Build an Azure OpenAI application using your own enterprise data February 2024

A Principled Technologies report: Hands-on testing. Real-world results.

https://facts.pt/2JHwrK6
https://www.principledtechnologies.com
https://facts.pt/2JHwrK6
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://aka.ms/oai/access

3. Create a VM set for the deployment and testing VMs.

a. In the Azure portal, go to the new resource group’s dashboard, and click Create.
b. On the Virtual machine scale set panel, click Create.
c. Enter the scale-set’s name and region.
d. For the image, select Ubuntu Server 22.04 LTS -x64 Gen2.
e. For the size, select Standard_D4s_v3.
f. For the authentication type, select Select SSH public key.
g. Select the Scaling tab.
h. For the Initial instance count, enter 5.
i. Select Manual for Scaling policy.
j. Click Review + Create.
k. Click Create.
l. Click Download private key and create resource.

4. Get each VM’s public IP address.
5. On each VM, perform the following tasks:

a. Log onto account azureuser using the SSH private key.
b. Copy the private key into the file ~/.ssh/key.pem.
c. Configure the account to use this key:

chmod 600 ~/.ssh/key.pem
mkdir ~/.ssh/controlmasters
chmod 700 ~/.ssh/controlmasters
cat <<EOF >> ~/.ssh/config
Host *
 IdentityFile ~/.ssh/key.pem
 HashKnownHosts yes
 StrictHostKeyChecking no
 ControlPath ~/.ssh/controlmasters/%r@%h:%p
 ControlMaster auto
 ControlPersist 2h

 ForwardX11 no
EOF

d. Update Ubuntu:

sudo apt update
sudo apt -y upgrade

e. Add the IP addresses of the VMs to the system hosts file:

cat <<EOF >> /etc/hosts
VMs
IP_1 test01
IP_2 test02
IP_3 test03
IP_4 test04
IP_5 deploy
EOF

f. Log onto each VM once to populate the SSH known-host file:

for i in deploy test{01..04}; do
 echo $i
 ssh $i date
done

g. Reboot the VM:

shutdown -r now

Build an Azure OpenAI application using your own enterprise data February 2024 | 2

6. Log onto the deployment VM.

a. Install prerequisite Ubuntu packages:

sudo apt-get install ca-certificates curl gnupg lsb-release wget

b. Install PowerShell:

wget https://github.com/PowerShell/PowerShell/releases/download/v7.3.10/
powershell_7.3.10-1.deb_amd64.deb
sudo dpkg -i powershell_7.3.10-1.deb_amd64.deb
rm powershell_7.3.10-1.deb_amd64.deb

c. Install the Azure command line tool:

sudo install -m 0755 -d /etc/apt/keyrings
curl -sLS https://packages.microsoft.com/keys/microsoft.asc | \
 sudo gpg --dearmor -o /etc/apt/keyrings/microsoft.gpg
 sudo chmod go+r /etc/apt/keyrings/microsoft.gpg
AZ_DIST=$(lsb_release -cs)
cat <<EOF | sudo tee /etc/apt/sources.list.d/ azure-cli.list > /dev/null
 deb [arch='dpkg --print-architecture' signed-by=/etc/apt/keyrings/microsoft.gpg] \
 https://packages.microsoft.com/repos/azure-cli/ $AZ_DIST main
EOF
sudo apt update
sudo apt install azure-cli

d. Add the prerequisite Azure packages:

for i in aks-preview application-insights storage-preview containerapp; do
 echo $i
 az extension add --name $i
az extension update --name $i
done

e. Install docker per its documentation:

sudo apt remove docker.io docker-doc docker-compose docker-compose-v2 \
 podman-docker containerd runc
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \
 sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod go+r /etc/apt/keyrings/docker.gpg
cat <<EOF | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
 deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] \
 https://download.docker.com/linux/ubuntu \
 $(. /etc/os-release && echo "$VERSION_CODENAME") stable
EOF
sudo apt update
sudo apt install docker-ce docker-ce-cli containerd.io docker-buildx-plugin \
 docker-compose-plugin
sudo usermod -aG docker $USER
newgrp docker

f. Install helm:

wget https://get.helm.sh/helm-v3.13.2-linux-amd64.tar.gz
tar -xf helm-v3.13.2-linux-amd64.tar.gz
sudo install linux-amd64/helm /usr/local/bin
rm -rf linux-amd64

Build an Azure OpenAI application using your own enterprise data February 2024 | 3

https://github.com/PowerShell/PowerShell/releases/download/v7.3.10/powershell_7.3.10-1.deb_amd64.deb
https://github.com/PowerShell/PowerShell/releases/download/v7.3.10/powershell_7.3.10-1.deb_amd64.deb
https://get.helm.sh/helm-v3.13.2-linux-amd64.tar.gz

7. For each testing VM:

a. Log into the system.
b. Install prerequisite Ubuntu packages:

sudo apt update
sudo apt install libx11-xcb1 libxcomposite1 libasound2 libatk1.0-0 libatk-bridge2.0-0 libcairo2
libcups2 libdbus-1-3 libexpat1 libfontconfig1 libgbm1 libgcc1 libglib2.0-0 libgtk-3-0 libnspr4
libpango-1.0-0 libpangocairo-1.0-0 libstdc++6 libx11-6 libx11-xcb1 libxcb1 libxcomposite1
libxcursor1 libxdamage1 libxext6 libxfixes3 libxi6 libxrandr2 libxrender1 libxss1 libxtst6

c. Create a testing directory:

mkdir testing

d. Install node and nodejs packages:

wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash
export NVM_DIR="$([-z "${XDG_CONFIG_HOME-}"] && printf %s "${HOME}/.nvm" || \
 printf %s "${XDG_CONFIG_HOME}/nvm")"
[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh"
nvm install 20.10.0
nvm install-latest-npm

npm i puppeteer

Downloading the AI-assisted chatbot and data to the deployment VM
1. Log into the deployment VM.
2. Clone the chatbot repository to get the chatbot code, configuration files, and deployment scripts:

git clone https://github.com/PrincipledTechnologiesInc/PT-AI-chatbot-with-Azure-Cosmos-DB-and-Azure-
AI-Search.git chatbot
cd chatbot

3. Download and uncompress the property-list data to a local file:

wget https://github.com/PrincipledTechnologiesInc/PT-AI-chatbot-with-Azure-Cosmos-DB-and-Azure-AI-
Search/raw/main/data/prop.js.gz
gunzip prop.js.gz

4. Obtain the connection string for your Azure Cosmos DB account:

a. Go to the Azure portal.
b. Click Resource groups, and select the Azure Cosmos DB account you plan to use to hold the data.
c. In the left column, click Keys.
d. Copy the PRIMARY CONNECTION STRING.

5. Create the dMT configuration file, migration.json (see below). Be sure to modify four values with “<<<>>>” in them as follows: In
the sink section, change FilePath to use the full path to the prop.json file. In the source section, change the ConnectionString,
Database name, and Container name to use yours.

File: migration.json

{
 "Source": "JSON",
 "Sink": "Cosmos-nosql",
 "Operations": [
 {
 "SourceSettings": {

"FilePath": "/ <<>>> /chatbot/data/prop.json"
 },

Build an Azure OpenAI application using your own enterprise data February 2024 | 4

https://github.com/PrincipledTechnologiesInc/PT-AI-chatbot-with-Azure-Cosmos-DB-and-Azure-AI-Search.git
https://github.com/PrincipledTechnologiesInc/PT-AI-chatbot-with-Azure-Cosmos-DB-and-Azure-AI-Search.git
https://github.com/PrincipledTechnologiesInc/PT-AI-chatbot-with-Azure-Cosmos-DB-and-Azure-AI-Search/raw/main/data/prop.js.gz
https://github.com/PrincipledTechnologiesInc/PT-AI-chatbot-with-Azure-Cosmos-DB-and-Azure-AI-Search/raw/main/data/prop.js.gz

 "SinkSettings": {
"ConnectionString": "AccountEndpoint= <<>>> ==",
"Database":"<<>>> database",
"Container":"<<<>>> properties",
"PartitionKeyPath":"/name",
"RecreateContainer": false,
"BatchSize": 100,
"ConnectionMode": "Direct",
"MaxRetryCount": 5,
"InitialRetryDurationMs": 200,
"CreatedContainerMaxThroughput": 1000,
"UseAutoscaleForCreatedContainer": true,
"WriteMode": "InsertStream",
"IsServerlessAccount": false
}

 }
]
}

6. Upload the data to your data container:

./dmt

Deploying the AI-assisted chatbot

To deploy the chatbot, you will need the name of your Azure subscription and the Azure region where you have enabled Azure OpenAI
Service. Running one script will create the necessary infrastructure, create, and deploy the chatbot.

As soon as the Azure API gateway starts, it will begin adding your data to the vector database. Depending on the size of your data, this
conversion could take several hours.

1. Log into the deployment VM.
2. Change the source of the property-listings data to your container’s endpoint. Change the ConnectionString to the one you obtained in

step 4 in the section Downloading the AI-assisted chatbot and data to the deployment VM.
3. Start PowerShell in the chatbot directory:

pwsh

4. Start the chatbot deployment, which will create a new Azure resource group with the name you give:

./scripts/Unified-Deploy.ps1 -resourceGroup <GROUP> -location <REGION> -subscription <SUBSCRIPTION>

5. The script’s final output is the URL for the chatbot’s web front-end. You can also find the URL in the resource group created by running
the following command, using the names of the resource GROUP and newly created AKS resource in that resource group:

az aks show -n <AKS> -g <GROUP> -o tsv --query addonProfiles.httpApplicationRouting.config.
HTTPApplicationRoutingZoneName

6. To determine whether the data-conversion process has finished, you have two choices.

• Look for an upload completed message in the log for the Azure API gateway pod with the kubectl command; viz.,

print the name of the API pod
kubectl get pods | awk '/ms-openai-cosmos-db-api-chat-service-web-api/ {print $1}'
kubectl logs API_POD | tail

• Alternatively, you can check the number of entries in the vector database’s index from the Azure AI Search dashboard. The number of
indexed entries will be 444,121 when the conversions have ended.

a. On the Azure portal, click the chatbot’s resource group.
b. Click the name of the Search service.
c. On the right, click Indexes.
d. The document count for the vector-index should be 444,121.

Build an Azure OpenAI application using your own enterprise data February 2024 | 5

Facts matter.®Principled
Technologies®

Facts matter.®

Running the performance testing

The directory testing contains data and scripts to automatically send questions to the chatbot from multiple users. The testing harness
creates random questions by selecting a random entry from a file of templates and then replacing the variables in the template with entry
randomly chosen from a file containing lists of countries, states, postal codes, amenities, etc.

We have not optimized the current chatbot architecture for more than 32 users, so we recommend using 32 or fewer users. The testing script
will distribute the users over the four VMs.

1. Log onto the first testing VM, test01.
2. Go to the testing directory:

cd testing

3. Run the performance test for N users:

node test_prompts N

The results of the test will be in the file named “results_DateTime_NumUsers.txt”. The file has four results for each user: the request’s starting
time, the elapsed time between the user’s pressing enter and the app’s printing the completion, the number of embedding tokens for the
user’s question, and the number of embedding tokens for the complete prompt and RAG context.

Read the report at https://facts.pt/2JHwrK6

Build an Azure OpenAI application using your own enterprise data February 2024 | 6

This project was commissioned by Microsoft.

Principled
Technologies®

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

https://www.principledtechnologies.com
https://facts.pt/2JHwrK6

