WebBench performance and power consumption on Intel- and AMDprocessor-based servers

Executive summary

Principled

Technologies[®]

Intel Corporation (Intel) commissioned Principled Technologies (PT) to measure the WebBench performance on dual-processor servers using the following three processors:

- 64-bit Intel Xeon Processor 3.60 GHz
- Dual-Core Intel Xeon Processor 5160
- Dual-Core AMD Opteron 285

WebBench 5.0 (128-bit US version) is an industrystandard benchmark for Web server software and hardware. It uses PC clients to send Web requests to the server under test. It generates performance results by incrementally increasing the number of clients making HTTP 1.0 GET requests to the Web server; the result is a curve showing the performance of the server under test. The peak of that curve represents the peak throughput of the server. WebBench reports results in both the total number of requests per second the server handled and its total throughput in bytes per second. To be certain that we found the true peak performance in our testing, we

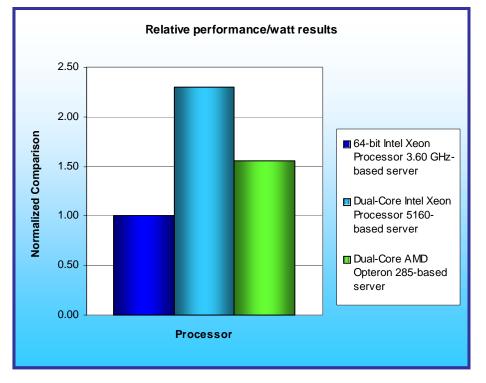
KEY FINDINGS

TEST REPORT

MAY 2006

- The Dual-Core Intel Xeon Processor 5160based server delivered 47.7 percent more performance/watt than the Dual-Core AMD Opteron 285-based server (see Figure 1). (We calculated performance/watt using system-level power measurements.)
- The Dual-Core Intel Xeon Processor 5160based server delivered over 22 percent higher peak WebBench performance than the Dual-Core AMD Opteron 285-based server (see Figure 2).
- The Dual-Core Intel Xeon Processor 5160based server had over 17 percent lower average power usage while delivering its peak performance on the benchmark than the Dual-Core AMD Opteron 285-based server (see Figures 3 and 5).

measured the processor utilization on the server and made sure that it reached or was extremely close to 100 percent during the test.



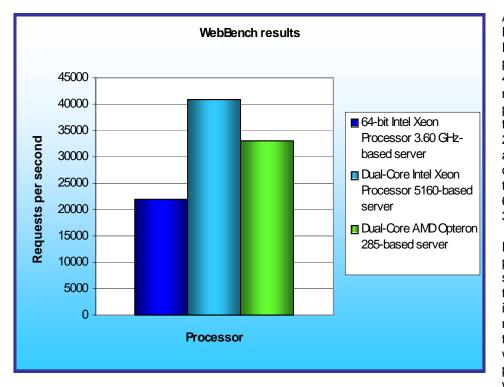


Figure 1 illustrates the performance/watt for each of the three servers. In this chart, we normalized the results for each system to the lowest performance/watt configuration. The lowest system's performance/watt result is thus always 1.00. By normalizing, we make each data point in these charts a comparative number, with higher results indicating better performance/watt. To calculate the performance/watt we used the following formula:

Performance/watt = the benchmark's peak score / average power consumption in watts during the time period in which the benchmark was delivering peak performance

As Figure 1 illustrates, the Dual-Core Intel Xeon Processor 5160-based server delivered 47.7 percent more performance/watt than the Dual-Core AMD Opteron 285-based server and 130 percent more performance/watt than the 64-bit Intel Xeon Processor 3.60 GHz-based server during its peak performance of the WebBench run.

Figure 2 shows the median WebBench peak results, in requests per second (rps), of the three test servers. To obtain the median results, we performed three runs with each server and selected the middle peak result of each. A higher number of requests per second is better, because the more Web requests a server can handle, the better.

As Figure 2 illustrates, the Dual-Core Intel Xeon Processor 5160-based server produced the highest result, 40,327.3 rps. This result is a more than 22 percent performance increase over the Dual-Core AMD Opteron 285-based server, which achieved 32,965.5 rps, and an over 83 percent increase over the 21,980.9 rps score of the 64-bit Intel Xeon Processor 3.60 GHz-based server.

Figure 3 shows a plot of the power usage of the three servers as they were running the benchmark. The red lines indicate the power measurement interval, the time during which the server was delivering peak performance and during which we captured power measurements. Lower power consumption is better. The Dual-Core Intel Xeon

Figure 2: Peak (dual-processor) performance of the test servers running WebBench 5.0. Higher numbers of requests per second are better.

Processor 5160-based server both started with a lower power consumption while idle and achieved its peak performance while drawing less power—over 17 percent less—than the Dual-Core AMD Opteron 285-based server.

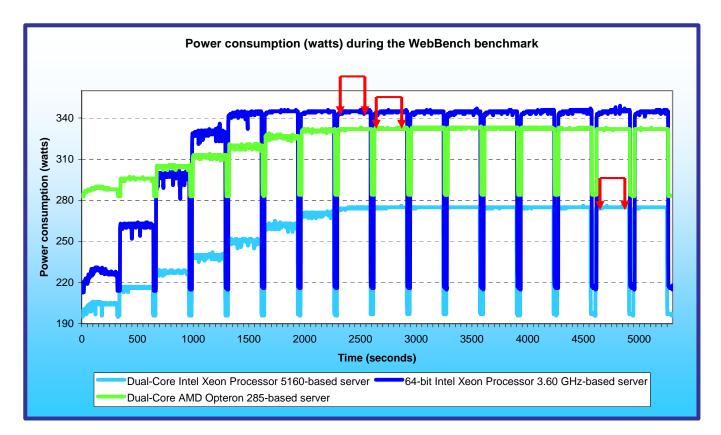


Figure 3: Power consumption (in watts) of each of the servers throughout the course of running WebBench. Lower power consumption is better.

Test results

We ran WebBench's default ecommerce API test suite, which generates both secure and non-secure static and dynamic HTTP 1.0 GET requests. While running the ecommerce suite, the clients must negotiate to a secure Web server port using the Secure Socket Layer (SSL) protocol. WebBench incrementally increases the number of clients making the HTTP 1.0 GET requests to the Web server. As the workload increases the number of clients, the Web server's processor utilization also increases, until the processor in the Web server is saturated with work. Each workload point with a fixed number of clients is a WebBench "mix". The ecommerce API test suite begins with a mix that involves one client, then a mix with four clients, and then increases the number of clients by four with each mix to a total of 60 clients. A standard WebBench run thus involves 16 mixes.

A WebBench run reports the total requests per second a server can perform and the total throughput, in bytes per second, that the server delivered. WebBench reports these results for each mix. A graph of these results yields a performance curve with a peak at some number of clients.

Figure 4 shows the WebBench peak results in requests per second and in throughput (bytes per second) of the three test servers. Each result is the median of three runs.

Server	Requests per Second	Throughput (Bytes per Second)
64-bit Intel Xeon Processor 3.60 GHz-based server	21980.9	89043156.1
Dual-Core Intel Xeon Processor 5160-based server	40327.3	163508439.6
Dual-Core AMD Opteron 285-based server	32965.5	133524637.9

Figure 4: Median requests per second and throughput results for the three servers running WebBench. Higher numbers are better.

Figure 5 details the power consumption, in watts, of the test servers while idle and during the median peak runs of the benchmark. The Dual-Core Intel Xeon Processor 5160-based server had over 17 percent lower average power usage during the benchmark's peak than the Dual-Core AMD Opteron 285-based server. Its power consumption while idle was almost 31 percent lower than that of the Dual-Core AMD Opteron 285-based server.

Server	Idle power (watts)	Average power (watts)
64-bit Intel Xeon Processor 3.60 GHz-based server – 2 processors	213.5	344.8
Dual-Core Intel Xeon Processor 5160-based server – 2 processors	196.0	275.0
Dual-Core AMD Opteron 285-based server – 2 processors	283.8	332.1

Figure 5: Average power usage (in watts) of the test servers while idle and during the median peak runs of the WebBench workload. Lower numbers are better.

Figure 6 shows a graph of the WebBench requests per second results for all three servers. This graph illustrates the server's performance under load for each of the 16 client mixes. As the number of clients increases, so does the load on the server and the number of requests per second the server must perform. During the first couple of mixes, the client count is low, so all three servers can handle the load with capacity to spare. As the load increases, however, the server reaches its maximum capacity and the processor utilization becomes 100 percent (or very close to that). The curves below peak and flatten at those points. A higher peak indicates better performance, so the Dual-Core Intel Xeon Processor 5160-based server clearly yielded the best performance.

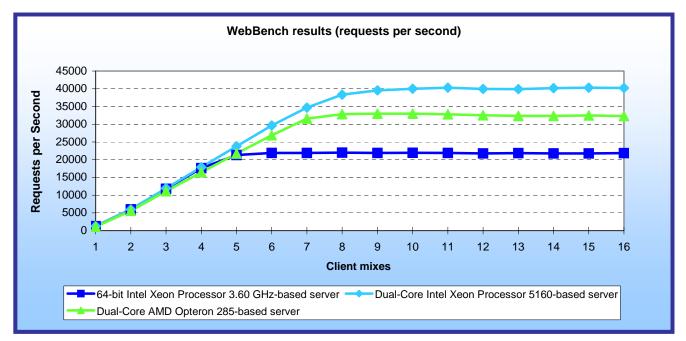


Figure 6: Line graph of the WebBench requests per second results for the three test servers. A higher peak indicates better performance.

Figure 7 shows the WebBench throughput results, in bytes per second, for all three servers. As with the previous graph, a higher peak is better. Again, the Dual-Core Intel Xeon Processor 5160-based server clearly yielded the best performance

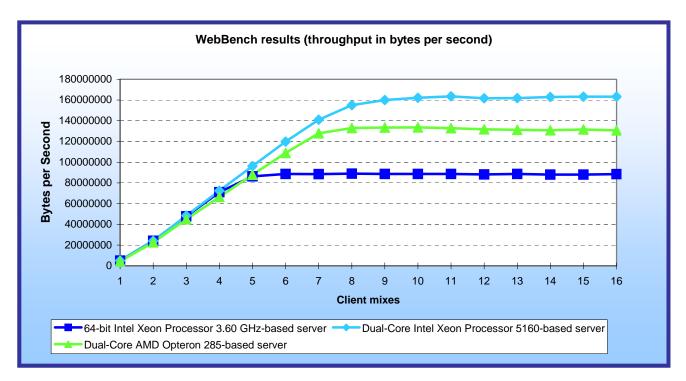


Figure 7: Line graph of the WebBench throughput results for the three test servers. A higher peak indicates better performance.

Test methodology

Figure 8 summarizes some key aspects of the configurations of the three server systems; Appendix A provides detailed configuration information.

Server	64-bit Intel Xeon Processor 3.60 GHz- based server	Dual-Core Intel Xeon Processor 5160- based server	Dual-Core AMD Opteron 285-based server
Processor frequency (GHz)	3.6GHz	3.0GHz	2.6GHz
Single/Dual-Core processors	Single	Dual	Dual
Motherboard	Intel SE7520AF2	Intel S5000PSL	UNIWIDE Technologies SS232- 128-03
Chipset	Intel E7520 Chipset	Intel 5000P Chipset	NVIDIA nForce4 Chipset
RAM (8GB in each)	8 x 1GB PC2-3200	8 x 1GB PC2-5300 FBDIMM	8 x 1GB PC-3200
Hard Drive	Western Digital WD1600YD	Western Digital WD1600YD	Western Digital WD1600YD

Figure 8: Summary of some key aspects of the server configurations.

Intel configured and provided all three servers.

The difference in RAM types reflects the capabilities of the three motherboards: The Intel SE7520AF2 motherboard offered a shared front-side bus speed of 800 MHz and contained DDR2 PC2-3200 400 MHz memory components. The Intel S5000PSL motherboard offered two independent front-side busses at a speed of 1333 MHz and contained Fully-Buffered DIMM (FBDIMM) modules that used commodity DDR2 PC2-5300 667MHz memory components. The UNIWIDE motherboard supported 184-pin DDR memory, and the highest memory speed available for the Dual-Core AMD Opteron 285-based server was DDR PC3200 400MHz RAM.

Another hardware difference between the servers was the number of processor cores, though all three systems offer four processing threads. The 64-bit Intel Xeon Processor 3.60 GHz-based server contained single-core processors with HT Technology. The Dual-Core Intel Xeon Processor 5160- and Dual-Core AMD Opteron 285-based server contained dual-core processors.

We began our testing by installing a fresh copy of Microsoft Windows 2003 Server, Enterprise Edition Service Pack 1 on each server. We followed this process for each installation:

- 1. Assign a computer name of "Server".
- 2. For the licensing mode, use the default setting of five concurrent connections.
- 3. Enter a password for the administrator log on.
- 4. Select Eastern Time Zone.
- 5. Use typical settings for the Network installation.
- 6. Use "Testbed" for the workgroup.

We applied the following updates for all three servers as suggested by the Microsoft Windows Update site:

- Security Update for Windows Server 2003 (KB908531)
- Windows Malicious Software Removal Tool April 2006 (KB890830)
- Cumulative Security Update for Internet Explorer for Windows Server 2003 (KB912812)
- Security Update for Windows Server 2003 (KB911562)
- Cumulative Security Update for Outlook Express for Windows Server 2003 (KB911567)
- Security Update for Windows Server 2003 (KB913446)
- Security Update for Windows Media Player Plug-in (KB911564)
- Security Update for Windows Server 2003 (KB911927)
- Security Update for Windows Server 2003 (KB908519)
- Security Update for Windows Server 2003 (KB912919)
- Security Update for Windows Server 2003 (KB904706)
- Update for Windows Server 2003 (KB910437)
- Security Update for Windows Server 2003 (KB896424)
- Security Update for Windows Server 2003 (KB900725)
- Security Update for Windows Server 2003 (KB901017)
- Security Update for Windows Server 2003 (KB899589)
- Security Update for Windows Server 2003 (KB902400)
- Security Update for Windows Server 2003 (KB905414)
- Security Update for Windows Server 2003 (KB899591)
- Security Update for Windows Server 2003 (KB890046)
- Security Update for Windows Server 2003 (KB899587)
- Security Update for Windows Server 2003 (KB896358)
- Security Update for Windows Server 2003 (KB896422)
- Security Update for Windows Server 2003 (KB896428)
- Security Update for Windows Server 2003 (KB893756)
- Security Update for Windows Server 2003 (KB899588)
- Security Update for Windows Server 2003 (KB901214)
- Update for Windows Server 2003 (KB898715)

Power measurement configuration

To record each server's power consumption during each test, we used an Extech Instruments (<u>www.extech.com</u>) 380803 Power Analyzer / Datalogger. We connected the power cord from the server under test to the Power Analyzer's output load power outlet. We then plugged the power cord from the Power Analyzer's input voltage connection into a power outlet.

We used the Power Analyzer's Data Acquisition Software (version 2.11) to capture all recordings. We installed the software on a separate Intel–processor-based PC, which we connected to the Power Analyzer via an RS-232 cable. We captured power consumption at one-second intervals.

To gauge the idle power usage, we recorded the power usage while each server was running the operating system but otherwise idle.

We then recorded the power usage (in watts) for each server during the testing at one-second intervals. To compute the average power usage, we averaged the power usage during the time the server was producing its peak performance results. We call this time the power measurement interval. See Figures 3 (power consumption over time) and 5 (idle and average peak power) for the results of these measurements.

Installing Internet Information Services

WebBench requires a Web server, so we installed the Windows Internet Information Services with the following procedure:

- 1. Click Start -> Control Panel -> Add/Remove Programs.
- 2. Select Add/Remove Windows Components.
- 3. Highlight Application Server and click the Details button.
- 4. Check the Internet Information Services (IIS) item, and Click OK.
- 5. Make sure you select enable ASP during the IIS installation.
- 6. Click the Next button.
- 7. Click Finish when the installation completes.
- 8. Close the Add or Remove Programs window.

Deploy WebBench data

WebBench includes data that must reside on the server and that the Web server must use. We loaded that data and set the Web server to use it with the following procedure:

- 1. Copy the file wbtree.exe from the WebBench CD to the wwwroot directory on the server under test. (The wbtree.exe file is on the WebBench CD at \wb50\workload).
- 2. On the server, execute the wbtree.exe file. This program will copy the WebBench workload to the server.
- 3. In the wwwroot folder on the server, create a new folder with the name CGI-BIN.
- 4. Copy the file simisapi.dll from the wwwroot folder to the CGI-BIN folder.
- 5. Click Start button -> Programs -> Administrative Tools -> Computer Management to open the management console.
- 6. Go to Services and Application ->Internet Information Services ->Default Web Site -> CGI-BIN, and right click to bring up a menu. Select Properties.
- 7. Go to the Directory Tab, and Set Execute Permissions to Scripts and Executables.
- 8. When the IIS WWW Configuration popup window displays, click Yes.
- 9. Close the Computer Management window.

Configuring Internet Information Services (IIS)

We configured the Windows Internet Information Services Web server as follows:

- 1. Open Computer Management.
- 2. Go to Services and Application -> Internet Information Services.
- 3. Right click to bring up a menu. Select Properties.

- 4. Click the MIME Types button.
- 5. In the MIME Types window, click the New button.
- 6. In the Extension field, type "*".
- 7. In the MIME type field, type "application/octet-stream". Click the OK button.
- 8. Click the OK button to exit the MIME Types window.
- 9. Click the OK button to exit the Internet Information Services (IIS) Manager Properties window.
- 10. In the Computer Management window, go to Web Sites ->Default Web Site under Internet Information Services. Right click it to bring up a menu. Select Properties.
- 11. Select the Home Directory tab.
- 12. Check the following boxes: Script source access, Read, Write, and Directory browsing.
- 13. Uncheck the following boxes: Log visits and Index this resource.
- 14. In the Execute permissions field, select Scripts and Executables.
- 15. Click the Apply button.
- 16. Select the Web Site tab.
- 17. Uncheck Enable Logging.
- 18. Click the OK button to close the Default Web Site Properties window.
- 19. In the Computer Management window, go to the Web Service Extensions item under Internet Information Services.
- 20. In the right panel, highlight All Unknown ISAPI Extensions and click the Allow button. Acknowledge the IIS Manager warning that appears by clicking the Yes button.
- 21. In the right panel, highlight All Unknown CGI Extensions and click the Allow button. Acknowledge the IIS Manager warning that appears by clicking the Yes button.
- 22. Close the Computer Management window.

Installing certificate services

Because WebBench includes tests that involve security, we installed Windows Certificate Services as follows:

- 1. Click Start -> Control Panel -> Add/Remove Programs.
- 2. Select Add/Remove Windows Components.
- 3. Put a check mark by Certificate Services.
- 4. Accept the notice that the server's name cannot be changed after you install this service.
- 5. Press Next.
- 6. Select Stand Alone Root CA, and click Next.
- 7. On the CA Identifying Information window, enter the server name in the Common name for this CA field, and click Next.
- 8. Leave the default Certificate Database Settings as they are, and click Next.
- 9. Click Yes at the prompt asking if you want to enable Active Server Pages (ASP) in IIS.
- 10. Click yes at the prompt that explains that Internet information Services will be temporarily stopped.
- 11. Click Next.
- 12. Click Finish.
- 13. Click Close.

Set up Internet Explorer

We had to set up Internet Explorer on the server as follows to be able to get the necessary certificates:

- 1. Double click the Internet Explorer icon on the desktop.
- 2. Select the Tools -> Internet Options menu item.
- 3. On the Connections tab, click the LAN Settings button.
- 4. Check Automatically detect settings, and click OK.
- 5. Click OK to exit the Internet Options window.

Requesting the server certificate

We had to set up Internet Explorer on the server as follows to be able to get the necessary certificates:

- 1. Open Internet Explorer and enter the following website, http://server/certsrv. This should bring up a page entitled "Microsoft Certificate Services server".
- 2. Select Request a Certificate link.
- 3. Select Advanced Certificate Request link.
- 4. Select "Create and submit a certificate request to this CA" link.
- 5. Fill out the appropriate Identifying Information details on the Advanced Certificate Request.
 - Name: Performance
 - Company: PT
 - Type of certificate needed: Server Authentication Certificate
 - Key Options:
 - CSP: Microsoft Base Cryptographic Provider v1.0
 - Usage: Exchange and Signature select both
 - Key size: 512
 - Check "Automatic key container name"
 - Check "Store certificate in the local computer certificate store"
 - Additional Options:
 - Hash Algorithm: SHA-1
 - Otherwise use default
- 6. Click [Submit]. Acknowledge the "Potential Scripting Violation" by clicking the [Yes] button.
- 7. There should now be a page informing that there is a Certificate Pending.

Issuing the server certificate

Next we had to issue a server certificate as follows:

- 1. Select Start -> Programs -> Administrative Tools -> Certification Authority.
- 2. Click the server's name.
- 3. Select Pending Requests.
- 4. Right click Pending Requests, select All Tasks, and choose Issue.
- 5. Close Certification Authority.

Installing the server certificate

We then installed the server certificate as follows:

- 1. Open Internet Explorer.
- 2. Go to the page http://server/certsrv again.
- 3. Click the View the status of a pending certificate link.
- 4. Click the Server Authentication Certificate link.
- 5. Click the Install this Certificate link.
- 6. Acknowledge the Potential Scripting Violation warning by clicking the OK button.
- 7. A message will note that a certificate has been successfully installed.
- 8. Close Internet Explorer.

Set IIS to use the server certificate

We then set IIS to use the server certificate as follows:

- 1. Click Start -> Programs -> Administrative Tools -> Computer Management to open the management console.
- 2. Select Services and Applications -> Internet Information Services->Web Sites.
- 3. Right click the Default Web site, and select Properties.
- 4. Select the Directory Security tab, and Click the Server Certificate button.
- 5. The Welcome to the Web Server Certificate Wizard window appears. Click Next.
- 6. Select Assign an Existing Certificate, and click Next.
- 7. Select your server certificate (Intended Purpose: Server Authentication). Click Next.

- 8. Accept the default SSL port (443) in the next window that appears, and click Next.
- 9. On the Certificate Summary screen click Next.
- 10. Click Finish.

Create SSL Communication

Finally, we had to enable SSL communication as follows:

- 1. Go to Computer management > Services and Application -> Internet Information Services.
- 2. Expand the Default Web site.
- 3. Expand wbtree.
- 4. Right click Wbssl, and select properties.
- 5. Select the Directory Security tab.
- 6. Click the Edit button under Secure communications.
- 7. Check Require secure channel (SSL).
- 8. Check Require 128-bit encryption.
- 9. Click OK.
- 10. Click OK.

Network test bed configuration

To generate the WebBench workload, we used a network with 60 client PCs. Each PC contained an Intel Pentium 4 3.0 GHz with HT Technology (or faster) processor, 512 MB of system memory, a 40 GB hard drive, and a Gigabit Ethernet network adapter. We configured each client with Windows XP Professional with Service Pack 2 and all critical updates available as of January 3, 2006.

We split the 60 clients into four segments, or subnets, of 15 clients each. We connected each segment to the server under test via one NETGEAR GS724T Gigabit Smart Switch. To balance the load on the server and to prevent a network throughput bottleneck, we connected each segment to a separate port of the Intel PRO/1000 PT Dual Gigabit Server adapters. Figure 9 illustrates the test bed configuration.

Each subnet contains 15 PCs. Each has an Intel Pentium 4 3.0-GHz with HT Technology (or faster) processor, 512MB of RAM, a 40GB (or larger) hard disk, and a Gigabit Ethernet network adapter.

Figure 9: Illustration of the test network we used to generate the WebBench workload.

Appendix A – Test server configuration information This appendix provides detailed configuration information about each of the three test server systems.

	64-bit Intel Xeon		
Processors	Processor 3.60 GHz	Dual-Core Intel Xeon Processor 5160	Dual-Core AMD Opteron 285
System configuration information	1	1	1
General			
Processor and OS kernel: (physical, core, logical) / (UP, MP)	2P2C4L / MP	2P4C4L / MP	2P4C4L / MP
Number of physical processors	2	2	2
Single/Dual-core processors	Single	Dual	Dual
System Power Management Policy	Always On	Always On	Always On
CPU CPU	, ,	, ,	,
Vendor	Intel	Intel	AMD
Name	64-bit Intel Xeon Processor 3.60 GHz	Dual-Core Intel Xeon Processor 5160	Dual-Core AMD Opteron 285
Stepping	3	4	2
Socket type	mPGA-604	LGA 775	940
Core frequency (GHz)	3.6 GHz	3.0 GHz	2.6 GHz
Front-side bus frequency (MHz)	800 MHz	1333 MHz Dual Independent Busses (DIB)	2000 MHz HyperTransport
L1 Cache	16KB + 12KB	32KB + 32KB	64KB + 64KB
L2 Cache	2MB	4MB (Shared)	2MB (1MB per core)
Platform	·	· · · · ·	· · · · · · · · · · · · · · · · · · ·
Vendor and model number	64-bit Intel Xeon Processor 3.60 GHz server	Dual-Core Intel Xeon Processor 5160 server	Dual-Core AMD Opteron 285 server
Motherboard model number	Intel SE7520AF2	Intel S5000PSL	UNIWIDE_SS232- 128-03
Motherboard chipset	Intel E7520 Chipset	Intel 5000P Chipset	NVIDIA nForce4 Chipset
Motherboard revision number	C4	92	A3
Motherboard serial number	KRA145100053	TM63S00221	WTOPHTSA01020
BIOS name and version	American Megatrends Inc. SE7520AF20.86B.P .10.00.0109.020820 06139	American Megatrends Inc. S5000.86B.01.00.00 36, 4/4/2006	American Megatrends Inc. 080012, 3/21/2006
BIOS settings	Default	HW Prefetcher and Adjacent Cache Line Prefetcher disabled	Default
Chipset INF driver	7.2.2.1006	7.3.0.1010	6.7
Memory module(s)			
Vendor and model number	Infineon HYS72T128000HR- 5-A	Micron MT18HTF12872FD Y	Corsair CMX1024RE-32000
Туре	PC2-3200	FB-DIMM using PC2-5300 components	PC-3200

Speed (MHz)	400MHz	667MHz	400MHz	
Speed in the system currently				
running @ (MHz)	400MHz	667MHz	400MHz	
Timing/Latency (tCL-tRCD-iRP-	0 0 0 44	E E E 40		
tRASmin)	3-3-3-11	5-5-5-12	3-3-3-8	
Size	8192MB	8192MB	8192MB	
Number of RAM modules	8	8	8	
Chip organization	Double-sided	Double-sided	Double-sided	
Channel	Single	Dual	Dual	
Hard disk	g			
	Western Digital	Western Digital	Western Digital	
Vendor and model number	WD1600YD	WD1600YD	WD1600YD	
Number of disks in system	1	1	1	
Size	160GB	160GB	160GB	
Buffer Size	16MB	16MB	16MB	
RPM	7200	7200	7200	
Туре	SATA	SATA	SATA	
	Intel 82801EB Ultra	Intel 631xESB	NVIDIA nForce4	
Controller	ATA	Serial ATA	Serial ATA	
			NVIDIA	
Controller driver	Intel 6.3.0.1005	Intel 7.3.0.1010	5.10.2600.552	
Operating system			0.10.2000.002	
operating system	Microsoft Windows	Microsoft Windows	Microsoft Windows	
Name	2003 Server, x32	2003 Server, x32	2003 Server, x32	
Name	Enterprise Edition	Enterprise Edition	Enterprise Edition	
Build number	3790	3790	3790	
Service Pack	SP1	SP1	SP1	
Microsoft Windows update date	5/5/2006	5/5/2006	5/5/2006	
File system	NTFS	NTFS	NTFS	
	ACPI Multiprocessor	ACPI Multiprocessor	ACPI Multiprocessor	
Kernel	x32-based PC	x32-based PC	x32-based PC	
Language	English	English	English	
Microsoft DirectX version	DirectX 9.0c	DirectX 9.0c	DirectX 9.0c	
Graphics	DirectA 9.00	DirectA 3.00	DirectA 3.00	
Vendor and model number	ATI Rage XL	ATI Rage XL	ATI Rage XL	
Chipset	ATI Rage XL PCI	ATI Rage XL PCI	ATI Rage XL PCI	
Chipset		BK-ATI	ATTRAYE AL FOI	
BIOS version	GR-xlints3y.019-	VER008.005.023.00	GR-xlacrs3p.003-	
DIOS VEISION	4.333	0	4.328	
Туре	Integrated	Integrated	Integrated	
Memory size	8MB	8MB	8MB	
Resolution	1024 x 768	1024 x 768	1024 x 768	
Driver	ATI 5.10.2600.6014	ATI 6.14.10.6553	ATI 5.10.2600.6014	
Network card/subsystem	ATT 5.10.2000.0014	ATT 0.14.10.0000	ATT 0.10.2000.0014	
Network card/subsystem	Intel PRO/1000 MT			
Vendor and model number	Dual Port Network	Intel PRO/1000 EB	Broadcom dual	
	adapter	Network Connection	NetXtreme Gigabit	
Туре	Integrated	Integrated	Integrated	
Driver	Intel 8.6.11.0	Intel 9.3.28.0	Broadcom 8.48.0.0	
	2 x Intel PRO/1000	2 x Intel PRO/1000	2 x Intel PRO/1000	
Additional card information	PT Dual Port Server	PT Dual Port Server	PT Dual Port Server	
	Adapter	Adapter	Adapter	
Additional card type	PCI – Express	PCI – Express	PCI – Express	
		I DI LAPIGOO		

Principled Technologies, Inc.: WebBench performance and power consumption on Intel- and AMD-processor-based servers

Additional card driver	Intel 9.3.28.0	Intel 9.3.28.0	Intel 9.3.28.0
Optical drive			
Vendor and model number	Samsung TS- H325A	LITE-ON SOHD- 16P9SV	Samsung SN-124
Туре	DVD/CD-ROM	DVD/CD-ROM	CD-ROM
Interface	Internal	Internal	Internal
USB ports			
# of ports	5	6	4
Type of ports (USB 1.1, USB 2.0)	USB 2.0	USB 2.0	USB 2.0

Figure 10: Detailed configuration information for the three test servers.

Appendix B – Test network configuration This appendix provides configuration information about the test network we used to run WebBench 5.0 against the servers under test.

Client #	Make/Model	Processor Speed	Memory Size/Type			
	Segment/Subnet 1					
Client 1	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 2	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 3	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 4	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 5	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 6	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 7	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 8	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 9	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 10	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 11	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 12	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 13	Custom built	Intel Pentium 4 3.2GHz w/HT	512MB PC2-5300			
Client 14	HP d4100y	Intel Pentium D 3.2GHz (DC)	1GB PC2-4300			
Client 15	Dell Optiplex GX280	Intel Pentium 4 3.4GHz w/HT	512MB PC3200			
	Seg	gment/Subnet 2				
Client 16	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 17	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 18	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 19	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 20	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 21	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 22	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 23	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 24	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 25	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 26	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 27	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 28	Custom built	Intel Pentium 4 3.2GHz w/HT	512MB PC3200			
Client 29	HP a750y	Intel Pentium 4 3.2GHz w/HT	512MB DDR2-400			
Client 30	Custom built	Intel Pentium 4 3.6GHz w/HT	512MB PC2-4300			
Segment/Subnet 3						
Client 31	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 32	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 33	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 34	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 35	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 36	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 37	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 38	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 39	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 40	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 41	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			
Client 42	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200			

Principled Technologies, Inc.: WebBench performance and power consumption on Intel- and AMD-processor-based servers

Client 43	HP dc5100mt	Intel Pentium 4 3.2GHz w/HT	512MB PC4200
Client 44	HP m1050Y	Intel Pentium 4 3.2GHz w/HT	1GB PC3200
Client 45	HP Dc7100CMT	Intel Pentium 4 3.4GHz w/HT	512MB PC3200
	Segi	ment/Subnet 4	
Client 46	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 47	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 48	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 49	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 50	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 51	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 52	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 53	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 54	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 55	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 56	Intel Desktop Board D915GMH	Intel Pentium 4 3.0GHz w/HT	512MB PC3200
Client 57	Dell Optiplex GX270	Intel Pentium 4 3.2GHz w/HT	512MB PC2700
Client 58	Custom built	Intel Pentium 4 3.0GHz w/HT	1GB PC3200
Client 59	IBM ThinkCentre 842243U	Intel Pentium 4 3.4GHz w/HT	512MB PC3200
Client 60	Custom built	Intel Pentium 4 3.6GHz w/HT	512MB PC2-4300

Figure 11: Configuration information about the test network.

Principled Technologies, Inc. 4813 Emperor Blvd., Suite 100 Durham, NC 27703 www.principledtechnologies.com info@principledtechnologies.com

Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners

Disclaimer of Warranties; Limitation of Liability:

PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER, PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE. ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC.'S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.'S TESTING. CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.