
The science behind the report:

Achieve higher data throughput for
your Apache Spark machine learning
workloads with M5n instances for
Amazon Web Services featuring
2nd Generation Intel Xeon Scalable
Processors – Cascade Lake

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Achieve higher data throughput for your Apache Spark machine learning
workloads with M5n instances for Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors
– Cascade Lake.

We concluded our hands-on testing on December 3, 2020. During testing, we determined the appropriate
hardware and software configurations and applied updates as they became available. The results in this report
reflect configurations that we finalized on November 20, 2020 or earlier. Unavoidably, these configurations may
not represent the latest versions available when this report appears.

Our results
Table 1: Comparison of results for Naive Bayesian classification and k-means clustering algorithm tests from the HiBench
benchmarking suite on small (8vCPU) Amazon EC2 instances running Apache Spark. The m5n.2xlarge instance featured
Cascade Lake processors, while the m4.2xlarge instance featured Broadwell processors.

Small instances (8 vCPUs)

Naive
Bayesian classification m4.2xlarge m5n.2xlarge m5n advantage

Throughput (MB/s) 29,637,445 36,396,624
1.22x

Time (seconds) 2,528.090 2,058.601

k-means
clustering algorithm m4.2xlarge m5n.2xlarge m5n advantage

Throughput (MB/s) 27,619,090 43,377,951
1.57x

Time (seconds) 8,647.882 5,506.176

February 2021 (Revised)Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

A Principled Technologies report: Hands-on testing. Real-world results.

http://facts.pt/3Kjn66x
http://www.principledtechnologies.com
http://
http://facts.pt/3Kjn66x
http://facts.pt/3Kjn66x
http://facts.pt/3Kjn66x

Table 2: Comparison of results for Naive Bayesian classification and k-means clustering algorithm tests from the HiBench
benchmarking suite on medium (16vCPU) Amazon EC2 instances running Apache Spark. The m5n.4xlarge instance featured
Cascade Lake processors, while the m4.4xlarge instance featured Broadwell processors.

Medium instances (16 vCPUs)

Naive
Bayesian classification m4.4xlarge m5n.4xlarge m5n advantage

Throughput (MB/s) 85,855,636 105,513,559
1.22x

Time (seconds) 872.699 710.109

k-means
clustering algorithm m4.4xlarge m5n.4xlarge m5n advantage

Throughput (MB/s) 66,696,052 95,013,003
1.42x

Time (seconds) 3,581.121 2,513.831

Table 3: Comparison of results for Naive Bayesian classification and k-means clustering algorithm tests from the HiBench
benchmarking suite on large (64vCPU) Amazon EC2 instances running Apache Spark. The m5n.16xlarge instance featured
Cascade Lake processors, while the m4.16xlarge instance featured Broadwell processors.

Large instances (64 vCPUs)

Naive
Bayesian classification m5n advantage

Throughput (MB/s) 338,019,726 529,270,148
1.56x

Time (seconds) 221.662 141.565

k-means
clustering algorithm m5n advantage

Throughput (MB/s) 141,121,360 243,951,314
1.72x

Time (seconds) 1,692.491 979.075

February 2021 (Revised) | 2Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

System configuration information
Table 4: Detailed information for the Intel Broadwell processor-based VMs.

VM configuration information m4.2xlarge m4.4xlarge m4.16xlarge

Tested by Principled Technologies Principled Technologies Principled Technologies

Test date 12/01/2020 12/01/2020 12/01/2020

CSP/region us-east1-f us-east1-f us-east1-f

Workload & version HiBench 7.1; Java 1.8.0; Apache
Spark 3.0.1; Hadoop: 3.2.1

HiBench 7.1; Java 1.8.0; Apache
Spark 3.0.1; Hadoop: 3.2.1

HiBench 7.1; Java 1.8.0; Apache
Spark 3.0.1; Hadoop: 3.2.1

WL specific parameters In test script below In test script below In test script below

Iterations and result choice 3 runs, median 3 runs, median 3 runs, median

Server platform m4.2xlarge m4.4xlarge M4.16xlarge

BIOS name and version Xen 4.2.amazon, 8/24/2006 Xen 4.2.amazon, 8/24/2006 Xen 4.2.amazon, 8/24/2006

Operating system name and
version/build number CentOS 8.2 CentOS 8.2 CentOS 8.2

Date of last OS updates/
patches applied 11/15/2020 11/15/2020 11/15/2020

Processor

Number of processors 1 1 2

Vendor and model Intel® Xeon® CPU E5-2686 v4 Intel Xeon CPU E5-2686 v4 Intel Xeon CPU E5-2686 v4

Core count (per processor) 4 8 16

Core frequency (GHz) 2.30 2.30 2.30

Stepping 1 1 1

Hyperthreading Yes Yes Yes

Turbo Yes Yes Yes

Number of vCPU per VM 8 16 64

Memory module(s)

Total memory in system (GB) 32 64 256

NVMe™ module present? No No No

Total memory
(DDR+NVMe RAM) 32 64 256

General hardware

Storage: Network or
Direct attached Network-attached Network-attached Network-attached

Network bandwidth per VM High High 10 Gb

Storage bandwidth per VM 1,000 Mbps 2,000 Mbps 10,000 Mbps

February 2021 (Revised) | 3Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

VM configuration information m4.2xlarge m4.4xlarge m4.16xlarge

Local storage (OS)

Number of drives 1 1 1

Drive size (GB) 50 50 50

Drive information gp2 gp2 gp2

Local storage (data drive)

Number of drives 1 1 1

Drive size (GB) 600 600 600

IOPS 2,000 2,000 2,000

Drive information io1 io1 io1

Local storage (log drive)

Number of drives 1 1 1

Drive size (GB) 100 100 100

IOPs 2,000 2,000 2,000

Drive information io1 io1 io1

Network adapter

Vendor and model Intel 82599 Intel 82599 Amazon Elastic Network Adapter

Number and type of ports 1x 10Gb 1x 10Gb 1x 25Gb

Table 5: Detailed configuration information for the Cascade Lake VMs.

VM configuration information m5n.2xlarge m5n.4xlarge m5n.16xlarge

Tested by Principled Technologies Principled Technologies Principled Technologies

Test date 12/01/2020 12/01/2020 12/01/2020

CSP/Region us-east1-f us-east1-f us-east1-f

Workload and version HiBench 7.1; Java 1.8.0;
Apache Spark 3.0.1

HiBench 7.1; Java 1.8.0;
Apache Spark 3.0.1

HiBench 7.1; Java 1.8.0;
Apache Spark 3.0.1

Workload-specific parameters In test script below In test script below In test script below

Iterations and result choice 3 runs, median 3 runs, median 3 runs, median

Server platform m5n.2xlarge m5n.4xlarge m5n.16xlarge

BIOS name and version Amazon EC2 1.0, 10/16/2017 Amazon EC2 1.0, 10/16/2017 Amazon EC2 1.0, 10/16/2017

Operating system name and
version/build number CentOS 8.2 CentOS 8.2 CentOS 8.2

Date of last OS updates/
patches applied 11/15/2020 11/15/2020 11/15/2020

Processor

Number of processors 1 1 2

Vendor and model Intel Xeon Platinum 8259CL Intel Xeon Platinum 8259CL Intel Xeon Platinum 8259CL

Core count (per processor) 4 8 16

February 2021 (Revised) | 4Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

VM configuration information m5n.2xlarge m5n.4xlarge m5n.16xlarge

Core frequency (GHz) 2.50 2.50 2.50

Stepping 7 7 7

Hyperthreading? Yes Yes Yes

Turbo Yes Yes Yes

Number of vCPU per VM 8 16 64

Memory module(s)

Total memory in system (GB) 32 64 256

NVMe memory present? No No No

Total memory
(DDR+NVMe RAM) 32 64 256

General hardware

Storage: Network or
Direct attached Direct attached Direct attached Direct attached

Network bandwidth per VM Up to 25 Gb Up to 25 Gb 75 Gb

Storage bandwidth per VM Up to 4,750 Mbps 4,750 Mbps 13,600 Mbps

Local storage (OS)

Number of drives 1 1 1

Drive size (GB) 50 50 50

Drive information gp2 gp2 gp2

Local storage (data drive)

Number of drives 1 1 1

Drive size (GB) 600 600 600

IOPS 2,000 2,000 2,000

Drive information io1 io1 io1

Local storage (log drive)

Number of drives 1 1 1

Drive size (GB) 100 100 100

IOPS 2,000 2,000 2,000

Drive information io1 io1 io1

Network adapter

Vendor and model Amazon Elastic Network Adapter Amazon Elastic Network Adapter Amazon Elastic Network Adapter

Number and type of ports 1x 25Gb 1x 25Gb 1x 75Gb

February 2021 (Revised) | 5Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

How we tested

Testing overview

For this project, we tested AWS instances featuring older Intel processors vs. Cascade Lake versions. We ran the kmeans and bayes tests
from the HiBench suite to show a performance increase in terms of time to complete each test and total throughput. Our results reflect what
customers can expect to see using the newer instance series vs. the older.

Using our methodology to aid your own deployments

While the methodology below describes in great detail how we accomplished our testing, it is not a deployment guide. However,
because we include many basic installation steps for operating systems and testing tools, reading our methodology may help with your
own installation.

Creating the Centos 8 baseline image

This section contains the steps we took to create our baseline image.

Creating the baseline Image VM
1.	 Log into AWS and navigate to the AWS Management Console.
2.	 Click EC2.
3.	 Click Launch instance. To open the Launch Instance wizard, select Launch instance from the drop-down menu.
4.	 In the search window, enter Centos 8 and press Enter.
5.	 On the AWS Marketplace tab, click the Select button next to Centos 8 base by Amazon Web Services.
6.	 On the Choose Instance Type tab, select t2.medium, and click "Next: Configure Instance Details".
7.	 On the Configure Instance tab, set the following:

• Number of instances: 1
• Purchasing option: Leave unchecked
• Network: Default VPC.
• Subnet: Choose the region you're working in.
• Auto-assign Public IP: Enable.
• Placement Group: Leave unchecked.
• Capacity Reservation: Open
• Domain join directory: No Directory
• IAM role: None
• Shutdown behavior: Stop

8.	 Click Next: Add Storage.
9.	 On the Add Storage tab, set the following:

• Size: 30GB
• Volume Type: gp2
• Delete on Termination: Checked
• Encryption: Not Encrypted

10.	 Click Next: Add Tags
11.	 On the Add Tags tab, set the following:

• ProjectName: Gyasi
• Study: 2

12.	 Click Next: Configure Security Group

13.	 On the Configure Security Group tab, leave defaults.
14.	 Click Review and Launch.
15.	 On the Review Tab, click Launch.
16.	 Choose the appropriate option for the key pair, then click Launch Instances.

February 2021 (Revised) | 6Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

Configuring Centos 8 and installing Apache Hadoop and Spark
1.	 Via ssh, log into the postgresql instance.
2.	 Log into your VM.
3.	 Change the root password.

sudo passwd root

4.	 Switch to the root user.

su -

5.	 Modify SSH to allow a pre-shared key login:

mkdir -p /root/.ssh
chmod 700 /root/.ssh
cd /root/.ssh
ssh-keygen -t rsa -q
cp id_rsa.pub authorized_keys
echo "StrictHostKeyChecking=no" > config

6.	 Set the hostname by typing the following command:

hostnamectl set-hostname [HOSTNAME]

7.	 To add your hostname to your IP address, modify your hosts file.
8.	 Turn off and disable your firewall:

systemctl stop firewalld
systemctl disable firewalld

Edit your selinux to disable its enforcing:

setenforce 0
vi /etc/selinux/config (modify "enforcing" to "disabled" in the file)

Update your OS:

yum upgrade -y

Install the prerequisites via yum:

yum install -y mdadm vim tar wget java-1.8.0-openjdk maven git blas64 lapack64 python2 bc

Download Apache Hadoop and Apache Spark:

wget http://www.gtlib.gatech.edu/pub/apache/spark/spark-3.0.1/spark-3.0.1-bin-hadoop3.2.tgz
wget http://www.gtlib.gatech.edu/pub/apache/hadoop/common/hadoop-3.2.1/hadoop-3.2.1.tar.gz

Modify your bash profile and add the following lines:

JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.265.b01-0.el8_2.x86_64/jre
PATH=$PATH:$HOME/bin:/opt/yarn/hadoop-3.2.1/bin

Reboot your system.

9.	 Add in the hadoop users

groupadd hadoop
useradd -g hadoop yarn
useradd -g hadoop hdfs
useradd -g hadoop mapred

10.	 Create default hadoop directories:

mkdir -p /var/data/hadoop/hdfs/nn
mkdir -p /var/data/hadoop/hdfs/snn
mkdir -p /var/data/hadoop/hdfs/dn
chown hdfs:hadoop /var/data/hadoop/hdfs/ -R
mkdir -p /var/log/hadoop/yarn
chown yarn:hadoop /var/log/hadoop/yarn/ -R
mkdir -p /opt/yarn

11.	 Extract the hadoop and spark compressed files:

cd /opt/yarn
tar xvzf /root/hadoop-3.2.1.tar.gz
tar -xvzf ~/spark-3.0.1-bin-hadoop3.2.tgz

February 2021 (Revised) | 7Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

12.	 Move into the hadoop directory, and make a yarn directory:

cd hadoop-3.2.1/
mkdir logs
chmod g+w logs
chown yarn:hadoop . -R

13.	 Navigate into the hadoop configuration directory:

cd etc/hadoop/

14.	 Modify the hadoop configuration files with the following settings:

core-site.xml

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://[MANAGER IP ADDRESS]:9000</value>
 </property>
 <property>
 <name>hadoop.http.staticuser.user</name>
 <value>hdfs</value>
 </property>
</configuration>

hdfs-site.xml

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>3</value>
 </property>
 <property>
 <name>dfs.namenode.name.dir</name>
 <value>file:/var/data/hadoop/hdfs/nn</value>
 </property>
 <property>
 <name>fs.checkpoint.dir</name>
 <value>file:/var/data/hadoop/hdfs/snn</value>
 </property>
 <property>
 <name>fs.checkpoint.edits.dir</name>
 <value>file:/var/data/hadoop/hdfs/snn</value>
 </property>
 <property>
 <name>dfs.datanode.data.dir</name>
 <value>file:/var/data/hadoop/hdfs/dn</value>
 </property>
</configuration>

mapred-site.xml

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
 <property>
 <name>yarn.app.mapreduce.am.env</name>
 <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
 </property>
 <property>
 <name>mapreduce.map.env</name>
 <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
 </property>
 <property>
 <name>mapreduce.reduce.env</name>
 <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
 </property>
</configuration>

February 2021 (Revised) | 8Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

yarn-site.xml

<configuration>
 <property>
 <name>yarn.resourcemanager.hostname</name>
 <value>[MANAGER HOSTNAME HERE]</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

	 hadoop-env.sh

	 Uncomment the JAVA_HOME line and add the following information:

JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.265.b01-0.el8_2.x86_64/jre

Power off the instance:

poweroff

Creating an AMI of your basline VM
1.	 Log into AWS, and navigate to the AWS Management Console.
2.	 Click EC2.
3.	 Click on Running instances.
4.	 Place a checkmark next to the instance you wish to create an image from.
5.	 Click the Action drop-down and select Image -> Create Image.
6.	 Enter the Image name and click Create Image.
7.	 Navigate to Images  AMI's in the menu on the left side of the page to see your new image.

Creating your instances with the baseline image

Creating the worker VMs from your image
1.	 Log into AWS, and navigate to the AWS Management Console.
2.	 Click EC2.
3.	 Click Images  AMIs.
4.	 Check the box next to the image you created in the previous step, and click Launch.
5.	 On the Choose Instance Type tab, select your VM size, and click Next: Configure Instance Details.
6.	 On the Configure Instance tab, set the following:

• Number of instances: 4
• Purchasing option: Leave unchecked.
• Network: Default VPC.
• Subnet: Choose the region you are working in.
• Auto-assign Public IP: Enable.
• Placement Group: Leave unchecked.
• Capacity Reservation: Open
• Domain join directory: No Directory
• IAM role: None
• Shutdown behavior: Stop

7.	 Click Next: Add Storage.

February 2021 (Revised) | 9Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

8.	 On the Add Storage tab, set the following:

• Size: 50GB
• Volume Type: (We chose gp2.)
• Delete on Termination: Unchecked.
• Encryption: Not Encrypted.

• Size: 600GB
• Volume Type: (We chose io1 with 2,000 IOPS.).
• Delete on Termination: Unchecked.
• Encryption: Not Encrypted.

• Size: 100GB
• Volume Type: (We chose io1 with 2,000 IOPS.).
• Delete on Termination: Unchecked
• Encryption: Not Encrypted.

9.	 Click Next: Add Tags
10.	 On the Add Tags tab, set the following:

• ProjectName: Gyasi
• Study: 2

11.	 Click Next: Configure Security Group
12.	 On the Configure Security Group tab, add your security group.
13.	 Click Review and Launch.
14.	 On the Review Tab, click Launch.
15.	 Choose the appropriate option for the key pair, and click Launch Instances.

Configuring and starting the cluster
1.	 To set the hostname on the master and each of the worker Instances, edit /etc/hostname.
2.	 Add the FQDN, hostname, and IP address of each VM to the /etc/hosts file on the manager and worker instances.
3.	 Verify that you can SSH into each instance without a password.
4.	 On the worker instances, create an XFS file system on the data and temp drive:

mkfs.xfs /dev/<DATA DRIVE> && mkfs.xfs /dev/<TEMP DRIVE>

5.	 On the worker instances, remove the hadoop data subdirectories:

rm -rf /var/data/hadoop/*

6.	 On the worker instances, mount the data drive:

mount /dev/<DATA DRIVE> /var/data/hadoop

7.	 On the worker instances, create the hadoop subdirectories for the namenode, secondary namenode, and datanode data and set
the permissions:

mkdir -p /var/data/hadoop/hdfs/nn
mkdir -p /var/data/hadoop/hdfs/snn
mkdir -p /var/data/hadoop/hdfs/dn
chown hdfs:hadoop /var/data/hadoop/hdfs/ -R

8.	 On each of the instances, format the hdfs filesystem and create the temp location:

hdfs namenode -format
mkdir -p /var/data/hadoop/hdfs/tmp

9.	 On the worker instances, mount the temp drive:

mount /dev/<TEMP DRIVE> /var/data/hadoop/hdfs/tmp

10.	 Append the following line to /opt/yarn/spark-3.0.1-bin-hadoop3.2/conf/spark-env.sh on each instance:

export SPARK_LOCAL_DIRS=/var/data/hadoop/hdfs/tmp

11.	 Start the Hadoop services and spark on the manager node:

/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon start namenode
/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon start secondarynamenode
/opt/yarn/hadoop-3.2.1/bin/yarn --daemon start resourcemanager
/opt/yarn/hadoop-3.2.1/bin/yarn --daemon start nodemanager
/opt/yarn/spark-3.0.1-bin-hadoop3.2/sbin/start-master.sh

February 2021 (Revised) | 10Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

12.	 Start the hadoop services and spark on each of the worker nodes:

/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon start datanode
/opt/yarn/spark-3.0.1-bin-hadoop3.2/sbin/start-slave.sh spark://[MANAGER IP ADDRESS]:7077

13.	 Perform the following steps on the manager node to install and configure HiBench.
14.	 Create the directories you will use for HiBench:

hdfs dfs -mkdir -p /user/root
hdfs dfs -mkdir /HiBench
hdfs dfs -chown -R root:hadoop /HiBench
hdfs dfs -chown root /user/root

15.	 Navigate to your home directory and download HiBench:

cd ~
git clone https://github.com/intel-hadoop/HiBench.git

16.	 Install HiBench for Apache Spark 3.0:

cd HiBench/
mvn -Dspark=3.0 -Dscala=2.12 clean package | tee hibench_build.log
cd conf/

17.	 Modify the HiBench configuration files with the following information:

hadoop.conf

Hadoop home
hibench.hadoop.home /opt/yarn/hadoop-3.2.1

The path of hadoop executable
hibench.hadoop.executable ${hibench.hadoop.home}/bin/hadoop

Hadoop configraution directory
hibench.hadoop.configure.dir ${hibench.hadoop.home}/etc/hadoop

The root HDFS path to store HiBench data
hibench.hdfs.master hdfs://[MANAGER IP ADDRESS]:9000

Hadoop release provider. Supported value: apache, cdh5, hdp
hibench.hadoop.release apache

spark.conf

Spark home
hibench.spark.home /opt/yarn/spark-3.0.1-bin-hadoop3.2/

Spark master
standalone mode: spark://xxx:7077
YARN mode: yarn-client
hibench.spark.master spark://[MANAGER IP ADDRESS]:7077

Running the tests

In this section, we list the steps to run the bayes and kmeans benchmark on the VMs under test. The benchmark is started from the manager
node using a script that automates the entire process at each instance size.

1.	 Log into the manager node via SSH.
2.	 Create a results directory:

mkdir ~/results

3.	 Navigate to the directory with your scripts:

cd ~/scripts

4.	 Run the benchmark script substituting the VM Instance size and CPU codename, e.g. clx for Cascade Lake or bdw for Broadwell. Results
are automatically saved in the ~/results directory of the manager node.

./run_test.sh <Instance size> <CPU codename>

5.	 Run the script at each instance size, and collect the data.

February 2021 (Revised) | 11Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

Test scripts

run_test.sh

#!/bin/bash
vcpu_count=${1}vCPU
platform=${2}
results_dir=~/results

mkdir -p ${results_dir}/${vcpu_count}
mkdir -p ${results_dir}/${vcpu_count}/bayes
mkdir -p ${results_dir}/${vcpu_count}/kmeans

timestamp=$(date '+%Y%m%d_%H%M%S')
bayes_results=${results_dir}/${vcpu_count}/bayes
kmeans_results=${results_dir}/${vcpu_count}/kmeans

#Start Apache Hadoop & Spark
~/scripts/start-spark.sh
sleep 120

#Delete input and output directories from prior testing
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Bayes/Input
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Bayes/Output
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Kmeans/Input
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Kmeans/Output
sleep 3

#Clear the memory cache on each worker node
~/scripts/reset-testbed.sh
sleep 30

#Change memory used by Spark based on instance size
if [${1} == 8]; then
 sed -i '/spark.executor.memory/ c\spark.executor.memory 26g' ~/Hibench/conf/spark.conf
 sed -i '/spark.driver.memory/ c\spark.driver.memory 26g' ~/Hibench/conf/spark.conf
elif [${1} == 16]; then
 sed -i '/spark.executor.memory/ c\spark.executor.memory 52g' ~/Hibench/conf/spark.conf
 sed -i '/spark.driver.memory/ c\spark.driver.memory 52g' ~/Hibench/conf/spark.conf
elif [${1} == 64]; then
 sed -i '/spark.executor.memory/ c\spark.executor.memory 205g' ~/Hibench/conf/spark.conf
 sed -i '/spark.driver.memory/ c\spark.driver.memory 205g' ~/Hibench/conf/spark.conf
else
 echo "Incompatible vCPU count. Please try again with either 8, 16, or 64 vCPUs."
 exit
fi

#Change dataset size to bigdata
sed -i '3s/gigantic/bigdata/' ~/Hibench/conf/hibench.conf

#Run Bayes test and copy results to Bayes subdirectory within the results directory
for i in {1..3}
do
~/scripts/bayes-test.sh
mkdir ${bayes_results}/run$i
 for j in {1..5}
 do
 cp -fv /tmp/spark$j.nmon ${bayes_results}/run$i/${platform}_bayes_node${j}_run${i}_${timestamp}.
nmon

February 2021 (Revised) | 12Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

 done
cp -fv ~/Hibench/report/hibench.report ${bayes_results}/run$i/${platform}_bayes_hibench_run${i}.
report
~/scripts/reset-testbed.sh
sleep 30
done

#Remove input and output directories generated for Bayes data
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Bayes/Input
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Bayes/Output
sleep 3

#Run Kmeans test and copy results to Kmeans subdirectory within the results directory
for i in {1..3}
do
~/scripts/kmeans-test.sh
mkdir ${kmeans_results}/run$i
 for j in {1..5}
 do
 cp -fv /tmp/spark$j.nmon ${kmeans_results}/run$i/${platform}_kmeans_node${j}_
run${i}_${timestamp}.nmon
 done
cp -fv ~/Hibench/report/hibench.report ${kmeans_results}/run$i/${platform}_kmeans_hibench_run${i}.
report
~/scripts/reset-testbed.sh
sleep 30
done

#Remove input and output directories generated for Kmeans data
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Kmeans/Input
/opt/yarn/hadoop-3.2.1/bin/hadoop --config /opt/yarn/hadoop-3.2.1/etc/hadoop fs -rm -r -skipTrash
hdfs://spark1.gyasi.local:9000/HiBench/Kmeans/Output
sleep 3

#Stop Spark & Hadoop
~/scripts/stop-spark.sh

#Poweroff worker nodes
for i in {2..5}
do
ssh spark$i poweroff
done

 start_spark.sh (manager node)

/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon start namenode
/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon start secondarynamenode
/opt/yarn/hadoop-3.2.1/bin/yarn --daemon start resourcemanager
/opt/yarn/hadoop-3.2.1/bin/yarn --daemon start nodemanager
/opt/yarn/spark-3.0.1-bin-hadoop3.2/sbin/start-master.sh
sleep 60
ssh spark2 '~/start-spark.sh'
ssh spark3 '~/start-spark.sh'
ssh spark4 '~/start-spark.sh'
ssh spark5 '~/start-spark.sh'

start_spark.sh (worker nodes)

/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon start datanode
/opt/yarn/spark-3.0.1-bin-hadoop3.2/sbin/start-slave.sh spark://[MANAGER IP ADDRESS]:7077

February 2021 (Revised) | 13Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

stop_spark.sh (manager node)

ssh spark2 '~/stop-spark.sh'
ssh spark3 '~/stop-spark.sh'
ssh spark4 '~/stop-spark.sh'
ssh spark5 '~/stop-spark.sh'
/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon stop namenode
/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon stop secondarynamenode
/opt/yarn/hadoop-3.2.1/bin/yarn --daemon stop resourcemanager
/opt/yarn/hadoop-3.2.1/bin/yarn --daemon stop nodemanager
/opt/yarn/spark-3.0.1-bin-hadoop3.2/sbin/stop-master.sh

stop_spark.sh (worker nodes)

/opt/yarn/hadoop-3.2.1/bin/hdfs --daemon stop datanode
/opt/yarn/spark-3.0.1-bin-hadoop3.2/sbin/stop-slave.sh

reset_testbed.sh

#!/bin/sh
sync; echo 3 > /proc/sys/vm/drop_caches
ssh -t spark2 'sync; echo 3 > /proc/sys/vm/drop_caches'
ssh -t spark3 'sync; echo 3 > /proc/sys/vm/drop_caches'
ssh -t spark4 'sync; echo 3 > /proc/sys/vm/drop_caches'
ssh -t spark5 'sync; echo 3 > /proc/sys/vm/drop_caches'

bayes-test.sh

#!/bin/sh
echo "Preparing Bayes test"
echo " "
echo " "
sleep 5
~/Hibench/bin/workloads/ml/bayes/prepare/prepare.sh
sleep 60

nmon -F /tmp/spark1.nmon -s1 -c3600 -J -t

for i in {2..5}
do
ssh spark$i nmon -F /tmp/spark$i.nmon -s1 -c3600 -J -t
done

echo "Running Bayes test"
echo " "
echo " "
sleep 5
time ~/Hibench/bin/workloads/ml/bayes/spark/run.sh
sleep 5

pkill nmon

for i in {2..5}
do
ssh spark$i pkill nmon
done

for i in {2..5}
do
scp spark$i:/tmp/spark$i.nmon /tmp/
done

February 2021 (Revised) | 14Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

kmeans-test.sh

#!/bin/sh

echo "Preparing Kmeans test"
echo " "
echo " "
sleep 5
~/Hibench/bin/workloads/ml/kmeans/prepare/prepare.sh
sleep 60

nmon -F /tmp/spark1.nmon -s1 -c3600 -J -t

for i in {2..5}
do
ssh spark$i nmon -F /tmp/spark$i.nmon -s1 -c3600 -J -t
done

echo "Running Kmeans test"
echo " "
echo " "
sleep 5
time ~/Hibench/bin/workloads/ml/kmeans/spark/run.sh
sleep 5

pkill nmon

for i in {2..5}
do
ssh spark$i pkill nmon
done

for i in {2..5}
do
scp spark$i:/tmp/spark$i.nmon /tmp/
done

February 2021 (Revised) | 15Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

This project was commissioned by Intel.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

Determining CPU vulnerability mitigation
The information below shows the Intel processor mitigation settings on the AWS instances.

m4.16xlarge
CVE-2017-5753: OK (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)
CVE-2017-5715: OK (Full retpoline is mitigating the vulnerability)
CVE-2017-5754: OK (Mitigation: PTI)
CVE-2018-3640: VULN (an up-to-date CPU microcode is needed to mitigate this vulnerability)
CVE-2018-3639: VULN (Your CPU doesn't support SSBD)
CVE-2018-3615: OK (your CPU vendor reported your CPU model as not vulnerable)
CVE-2018-3620: OK (Mitigation: PTE Inversion)
CVE-2018-3646: OK (this system is not running a hypervisor)
CVE-2018-12126: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2018-12130: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2018-12127: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2019-11091: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2019-11135: VULN (Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown)
CVE-2018-12207: OK (this system is not running a hypervisor)

m5n.16xlarge
CVE-2017-5753: OK (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)
CVE-2017-5715: OK (Full retpoline is mitigating the vulnerability)
CVE-2017-5754: OK (Mitigation: PTI)
CVE-2018-3640: VULN (an up-to-date CPU microcode is needed to mitigate this vulnerability)
CVE-2018-3639: VULN (Your CPU doesn't support SSBD)
CVE-2018-3615: OK (your CPU vendor reported your CPU model as not vulnerable)
CVE-2018-3620: OK (Mitigation: PTE Inversion)
CVE-2018-3646: OK (this system is not running a hypervisor)
CVE-2018-12126: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2018-12130: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2018-12127: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2019-11091: VULN (Your kernel supports mitigation, but your CPU microcode also needs to be
updated to mitigate the vulnerability)
CVE-2019-11135: OK (your CPU vendor reported your CPU model as not vulnerable)
CVE-2018-12207: OK (this system is not running a hypervisor)

Read the report at http://facts.pt/3Kjn66x

February 2021 (Revised) | 16Achieve higher data throughput for your Apache Spark machine learning workloads with M5n instances for
Amazon Web Services featuring 2nd Generation Intel Xeon Scalable Processors – Cascade Lake

http://www.principledtechnologies.com
http://facts.pt/3Kjn66x

