

Achieve more storage performance with Dell PowerEdge R750 servers equipped with Broadcom PCIe Gen4 switches

This document describes what we tested, how we tested, and what we found. To learn how these facts translate into real-world benefits, read the report Achieve more storage performance with Dell PowerEdge R750 servers equipped with Broadcom PCIe Gen4 switches.

We concluded our hands-on testing on March 30, 2022. During testing, we determined the appropriate hardware and software configurations and applied updates as they became available. The results in this report reflect configurations that we finalized on March 15, 2022 or earlier. Unavoidably, these configurations may not represent the latest versions available when this report appears.

Our results

To learn more about how we have calculated the wins in this report, go to https://facts.pt/calculating-and-highlighting-wins. Unless we state otherwise, we have followed the rules and principles we outline in that document.

Random read testing results	Dell PowerEdge [™] R750	Dell PowerEdge R740xd	Up to 2.1x the raw IOPS	
8 NVMe [™] drives				
8 cores (Thousands of IOPS (kIOPS))	5,011.33	2,996.66		
16 cores (kIOPS)	7,864.00	3,156.00	Up to 12 million IOP	
36 cores (kIOPS)	12,100.00	3,163.66		
56 cores (kIOPS)	12,000.00	N/A		

Table 1: Results of our 4KB random read workload FIO benchmark testing.

Random read testing results	Dell PowerEdge [™] R750	Dell PowerEdge R740xd	Up to 2.1x the raw IOPS	
12 NVMe drives				
8 cores (kIOPS)	4,975.66	4,203.00		
16 cores (kIOPS)	9,183.66	4,502.66		
36 cores (kIOPS)	11,100.00	4,658.00	Up to 11.4 million IOPS	
56 cores (kIOPS)	11,466.67	N/A		
24 NVMe drives				
8 cores (kIOPS)	4,952.33	4,729.33		
16 cores (kIOPS)	9,924.33	5,574.33		
36 cores (kIOPS)	12,000.00	5,744.00	Up to 12.3 million IOPS	
56 cores (kIOPS)	12,300.00	N/A		

Table 2: Results of our 4KB random write workload FIO benchmark testing. Note: Our random write testing was limited by NVMe drive performance and could not properly show the differences between the two architectures.

Random write testing results	Dell PowerEdge R750	Dell PowerEdge R740xd	Up to 1.1x the raw IOPS			
8 NVMe drives						
8 cores (kIOPS)	1,985.67	2,052.33				
16 cores (kIOPS)	2,805.67	2,140.67				
36 cores (kIOPS)	2,878.33	2,142.67	Up to 2.8 million IOPS			
56 cores (kIOPS)	2,882.00	N/A				
12 NVMe drives						
8 cores (kIOPS)	1,947.67	2,048.33				
16 cores (kIOPS)	3,513.67	3,198.67				
36 cores (kIOPS)	4,268.67	3,210.00	Up to 4.2 million IOPS			
56 cores (kIOPS)	4,293.33	N/A				
24 NVMe drives						
8 cores (kIOPS)	1,905.33	2,003.67				
16 cores (kIOPS)	4,127.00	3,779.67				
36 cores (kIOPS)	7,614.00	6,242.33	Up to 7.3 million IOPS			
56 cores (kIOPS)	7,363.67	N/A				

Table 3: Results of our 1MB sequential read workload FIO benchmark testing.

Sequential read testing results	quential read Tell PowerEdge R750 Dell PowerEdge R740xd		Up to 2.2x the GiB/s		
8 NVMe drives					
8 cores: Throughput (GiB/s)	37.8	23.0			
16 cores: Throughput (GiB/s)	40.5	23.7			
36 cores: Throughput (GiB/s)	38.1	23.8	Up to 50.9 GiB/s		
56 cores: Throughput (GiB/s)	50.9	N/A			
12 NVMe drives					
8 cores: Throughput (GiB/s)	53.1	23.8			
16 cores: Throughput (GiB/s)	52.7	23.7			
36 cores: Throughput (GiB/s)	53.0	23.7	Up to 53.2 GIB/s		
56 cores: Throughput (GiB/s)	53.2	N/A			
24 NVMe drives					
8 cores: Throughput (GiB/s)	53.2	23.7			
16 cores: Throughput (GiB/s)	53.2	23.7			
36 cores: Throughput (GiB/s)	53.2	23.5	Up to 53.2 GIB/s		
56 cores: Throughput (GiB/s)	53.2	N/A			

Table 4: Results of our 1MB sequential write workload FIO benchmark testing.

Sequential write testing results	Dell PowerEdge R750	Dell PowerEdge R740xd	Up to 1.9x the GiB/s		
8 NVMe drives					
8 cores: Throughput (GiB/s)	31.3	23.5			
16 cores: Throughput (GiB/s)	30.4	23.4			
36 cores: Throughput (GiB/s)	30.3	23.2	Up to 31.6 GiB/s		
56 cores: Throughput (GiB/s)	31.6	N//A			
12 NVMe drives					
8 cores: Throughput (GiB/s)	47.4	25.1			
16 cores: Throughput (GiB/s)	47.2	25.7			
36 cores: Throughput (GiB/s)	45.8	25.6	Up to 47.5 GIB/s		
56 cores: Throughput (GiB/s)	47.5	N/A			
24 NVMe drives					
8 cores: Throughput (GiB/s)	50.0	25.7			
16 cores: Throughput (GiB/s)	49.9	25.7			
36 cores: Throughput (GiB/s)	49.6	25.7			
56 cores: Throughput (GiB/s)	49.3	N/A			

System configuration information

Table 5: Detailed information on the systems we tested.

Server configuration information	Dell PowerEdge R750	Dell PowerEdge R740xd		
BIOS name and version	Dell 1.3.8	Dell 2.12.2		
Operating system name and version/ build number	Red Hat® Enterprise Linux® release 8.4 (Ootpa)/ 4.18.0-305.25.1.el8_4.x86_64	Red Hat Enterprise Linux release 8.4 (Ootpa)/ 4.18.0-305.25.1.el8_4.x86_64		
Date of last OS updates/patches applied	1/13/22	1/13/22		
Processor				
Number of processors	2	2		
Vendor and model	Intel® Xeon® Gold 6330	Intel Xeon Gold 6240L Processor		
Core count (per processor)	28	18		
Core frequency (GHz)	2.00	2.60		
Stepping	6	7		
Memory module(s)				
Total memory in system (GB)	256	256		
Number of memory modules	16	16		
Vendor and model	Samsung® M393A2K43DB3-CWE	Micron 18ASF2G72PDZ-3G2R1		
Size (GB)	16	16		
Туре	DDR4	DDR4		
Speed (MHz)	3,200	3,200		
Speed running in the server (MHz)	2,933	2,933		
Storage controller				
Vendor and model	Broadcom PEX8000 series PCIe® Gen4 switch	Broadcom PEX 9733 33-lane, 9-port PCI Express Gen3 (8.0 GT/s) switch		
Firmware version	N/A	4.35		
Local storage				
Number of drives	24	24		
Drive vendor and model	Dell Ent NVMe CM6 MU 3.2 TB	Dell NVMe MU U.2 3.2TB (P5600)		
Drive size (GB)	3,200	3,200		
Drive information	NVMe SSD	NVMe SSD		
Network adapter				
Vendor and model	Broadcom NetXtreme BCM5720 2-port Gigabit Ethernet PCIe, Broadcom BCM57414 NetXtreme-E 10Gb/25Gb RDMA Ethernet Controller	2 x Broadcom NetXtreme Gigabit Ethernet BCM95720		
Number and type of ports	2 x 1GbE, 2 x 10GbE	2 x 1GbE		

Server configuration information	Dell PowerEdge R750	Dell PowerEdge R740xd		
Cooling fans				
Number of cooling fans	6	6		
Power Supplies				
Vendor and model	Dell 0M63JNA00	Dell 0CMPGMA03		
Number of power supplies	2	2		
Wattage of each (W)	2,400	1,100		

System diagrams

Figure 1: Dell PowerEdge R750 CPU mapping diagram. Source: Principled Technologies.

Figure 2: Dell PowerEdge R740xd CPU mapping diagram. Source: Principled Technologies.

How we tested

Both systems were dual-processor, and each processor controlled a single switch. We tested with 8, 12, and 24 NVMe drives, evenly splitting the drives between the switches. The R740xd and R750 had different NVMe drives. We also used the NVMe Command Line Interface (NVMe-CLI) software to manage 8, 12, and 24 NVMe SSDs on the PowerEdge R750.

Installing Red Hat 8.4

Install the Operating System on both the Dell PowerEdge R740xd and Dell PowerEdge R750 systems.

- 1. Open a browser window and connect to the iDRAC.
- 2. Log into the iDRAC.
- 3. To open it, click Virtual Console.
- 4. Click Connect Virtual Media.
- 5. Next to Map CD/DVD, click Browse.
- 6. Browse to the ISO for Red Hat 8.4.
- 7. Click Map Device.
- 8. Click Boot.
- 9. Click the Virtual CD/DVD/ISO text.
- 10. Click yes.
- 11. Click Power, and boot the machine.
- 12. At the Red Hat Enterprise Linux boot menu, press Up, select Install Red Hat Enterprise Linux 8.4.0, and press Enter.
- 13. At the Welcome screen, make sure English is selected, and click Continue.
- 14. At the Installation Summary screen, click Time & Date.
- 15. To adjust your location, use the down arrows next to Region and City, and click Done.
- 16. At the Installation Summary screen, click Software Selection.
- 17. At the Software Selection screen, click Minimal Install, and click Done.
- 18. At the Installation Summary screen, click Installation Destination.
- 19. At the Installation Destination screen, select the only non-NVMe drive. Leave Automatic selected for the Storage Configuration, and click Done.
- 20. At the Installation Summary screen, click Network & Host Name.
- 21. At the Network & Host Name screen, where it says Host Name, enter R740xd or R750, and click Apply.
- 22. At the top-right of the screen, next to Ethernet information, click the OFF slider to ON, allow the NIC connect, pick up an IP address from DHCP, and click Done.
- 23. Click Begin Installation.
- 24. At the Configuration screen, click Root Password. Next to Root Password and Confirm, type in your preferred password, and click Done.
- 25. When the Reboot button appears, click it.

Preparing scripts and running FIO tests

Prepare FIO and bash script files to automate testing and gathering results on both systems. We used NVMe-CLI to optimize drive interrupts. We created 1drive configuration files and varied the iodepth, numjobs, and other parameters to find the configuration that yielded the maximum results for 1 drive. In general, we tended to the same parameters in the 8-,12-, and 24-multidrive configurations unless we thought we could get better performance by making further adjustments.

- 1. Create the following bash scripts, and install the appropriate software:
 - a. runtest.sh:

```
test_config=$1
cpu=$2
testno=$3
stat_collection_time=$4
hostname='hostname'
cur_time=$(date +"%Y.%m.%d_%H.%M")
host='echo $hostname | cut -d "." -f1'
OUTDIR=STATS_$(cur_time)_$(host)_$(test_config)_$(cpu)_$(testno)_$(RANDOM)
mkdir -p $OUTDIR
echo "Directory name is $OUTDIR"
echo "birectory name is $OUTDIR"
echo "Starting fio"
fio --output-format=normal --terse-version=3 ./$(test_config).cfg output=./$OUTDIR/$(test_
```

config} \${cpu}CPU_TEST\${testno}.txt & fiopid=\$! echo "Waiting 60 seconds for system to be in a steady state" sleep 60 echo "Getting system stats for \$stat collection time seconds" mpstat -P ALL 1 > mpstat out.txt & pidmpstat=\$! dstat -t -v --nocolor > dstat out.txt & piddstat=\$! iostat -xmt 1 > iostat out.txt & pidiostat=\$! sleep \$stat_collection_time echo "Killing mpstat" kill -9 \$pidmpstat echo "Killing dstat" kill -9 \$piddstat echo "Killing iostat" kill -9 \$pidiostat echo "Waiting for fio to complete" while kill -0 \$fiopid 2> /dev/null; do sleep 10 done mv mpstat_out.txt \${OUTDIR}/mpstat out.txt mv dstat out.txt \${OUTDIR}/dstat out.txt mv iostat out.txt \${OUTDIR}/iostat out.txt echo "Test \$OUTDIR complete"

b. Get_Sys_Info_NVMeDir.sh:

```
#!/bin/sh'
*****
### THE FOLLOWING VARIABLES CAN BE MODIFIED FOR YOUR SPECIFIC TEST REQUIREMENTS ###"
.
storcli="storcli64"'
controller number=0'
hostname='hostname''
cur_time=$(date "+%Y.%m.%d-%H.%m")'
host='echo $hostname | cut -d "." -f1''
OUTDIR=SysInfo ${RANDOM} ${host} ${cur time}'
echo "*** All results and system information can be found in the OUTDIR directory."'
mkdir -p $OUTDIR'
echo'
*****
collect system info() {'
echo'
echo "#### COLLECTING SYSTEM INFO
                            ####"'
echo'
.
# Collect System Info'
echo -e 'hostname' >> $OUTDIR/Sys Config.txt'
echo -e "OS: 'cat /etc/redhat-release'\n" >> $OUTDIR/Sys_Config.txt'
echo -e "Proc Version: 'cat /proc/version'\n" >> $OUTDIR/Sys Config.txt'
echo -e "\nMemory Information:" >> $OUTDIR/Sys_Config.txt'
cat /proc/meminfo >> $OUTDIR/Sys_Config.txt'
echo -e "\nProcessor Information:" >> $OUTDIR/Sys Config.txt'
cat /proc/cpuinfo >> $OUTDIR/Sys Config.txt'
```

```
echo -e "\nPCI Information:" >> $OUTDIR/Sys_Config.txt'
lspci -vvv >> $OUTDIR/PCI Config.txt'
echo -e "\nSystem DMI Information:" >> $OUTDIR/Sys_Config.txt'
dmidecode >> $OUTDIR/Sys_Config.txt'
echo -e "\nChecking SCSI MQ Settings, use_blk_mq is set to: 'cat /sys/module/scsi_mod/
parameters/use_blk_mq'\n" >> $OUTDIR/Sys_Config.txt'
numactl --hardware >> $OUTDIR/NUMA.txt 2> /dev/null'
nvme list >> $OUTDIR/nvmelist.txt'
rm -rf storcli.log'
echo "*** System specific information can be found in $OUTDIR\\SystemInfo directory"
echo'
sleep 1'
} '
۲
******
collect system info'
Enter the following commands'
yum -y install sysstat'
yum -y install pcp-system-tools'
yum -y install numactl'
chmod a+x *.sh
```

- Create the FIO configuration files with *.cfg as the file extension. We provide an example file used for each workload here, along with a table 6 listing what parameters we adjusted for individual tests. All files we provide are for the 8-drive tests but have additional lines that you can uncomment in order to test more drives.
 - a. Random read configuration file:

[global] name=4k random read scramble buffers=1 buffered=0 sync=0 ioengine=libaio norandommap do verify=0 randrepeat=0 random generator=tausworthe64 offset=0 thinktime=0 time based=1 ramp time=5m direct=1 overwrite=0 group reporting=1 bs=4k blockalign=4k rw=randread numa_cpu_nodes=0 cpus allowed policy=shared iodepth=32 numjobs=4 runtime=60s [part1] filename=/dev/nvme0n1 numa cpu nodes=0

[part2]
filename=/dev/nvme12n1
numa_cpu_nodes=1

[part3]
filename=/dev/nvme2n1
numa_cpu_nodes=0

[part4]
filename=/dev/nvme14n1
numa_cpu_nodes=1

[part5]
filename=/dev/nvme4n1
numa_cpu_nodes=0

[part6]
filename=/dev/nvme16n1
numa_cpu_nodes=1

[part7]
filename=/dev/nvme6n1
numa_cpu_nodes=0

[part8]
filename=/dev/nvme18n1
numa_cpu_nodes=1

#[part9]
#filename=/dev/nvme8n1
#numa_cpu_nodes=0

#[part10]
#filename=/dev/nvme20n1
#numa_cpu_nodes=1

#[part11]
#filename=/dev/nvme10n1
#numa_cpu_nodes=0

#[part12]
#filename=/dev/nvme22n1
#numa_cpu_nodes=1

#[part13]
#filename=/dev/nvme1n1
#numa_cpu_nodes=0

#[part14]
#filename=/dev/nvme13n1
#numa_cpu_nodes=1

#[part15]
#filename=/dev/nvme3n1
#numa_cpu_nodes=0

#[part16]
#filename=/dev/nvme15n1
#numa_cpu_nodes=1

#[part17]
#filename=/dev/nvme5n1
#numa_cpu_nodes=0

#[part18]
#filename=/dev/nvme17n1
#numa_cpu_nodes=1

#[part19]
#filename=/dev/nvme7n1
#numa_cpu_nodes=0

#[part20]
#filename=/dev/nvme19n1
#numa_cpu_nodes=1

#[part21]
#filename=/dev/nvme9n1
#numa_cpu_nodes=0

#[part22]
#filename=/dev/nvme21n1
#numa_cpu_nodes=1

#[part23]
#filename=/dev/nvme11n1
#numa_cpu_nodes=0

#[part24]
#filename=/dev/nvme23n1
#numa cpu nodes=1

Random write configuration file: [global] name=4k_random_write scramble buffers=1 buffered=0 sync=0 ioengine=libaio norandommap do verify=0 randrepeat=0 random_generator=tausworthe64 offset=0 thinktime=0 time_based=1 ramp time=5m direct=1 overwrite=0 group_reporting=1 bs=4k blockalign=4k rw=randwrite numa_cpu_nodes=0 cpus_allowed_policy=shared iodepth=4 numjobs=2

runtime=60s
[part1]
filename=/dev/nvme0n1
numa_cpu_nodes=0

[part2]
filename=/dev/nvme12n1
numa_cpu_nodes=1

[part3]
filename=/dev/nvme2n1
numa_cpu_nodes=0

[part4]
filename=/dev/nvme14n1
numa_cpu_nodes=1

[part5]
filename=/dev/nvme4n1
numa_cpu_nodes=0

[part6]
filename=/dev/nvme16n1
numa_cpu_nodes=1

[part7]
filename=/dev/nvme6n1
numa_cpu_nodes=0

[part8]
filename=/dev/nvme18n1
numa_cpu_nodes=1

#[part9]
#filename=/dev/nvme8n1
#numa_cpu_nodes=0

#[part10]
#filename=/dev/nvme20n1
#numa_cpu_nodes=1

#[part11]
#filename=/dev/nvme10n1
#numa_cpu_nodes=0

#[part12]
#filename=/dev/nvme22n1
#numa_cpu_nodes=1

#[part13]
#filename=/dev/nvme1n1
#numa_cpu_nodes=0

#[part14]
#filename=/dev/nvme13n1
#numa_cpu_nodes=1

#[part15]
#filename=/dev/nvme3n1
#numa_cpu_nodes=0

#[part16]
#filename=/dev/nvme15n1
#numa_cpu_nodes=1

#[part17]
#filename=/dev/nvme5n1
#numa cpu nodes=0

#[part18]
#filename=/dev/nvme17n1
#numa_cpu_nodes=1

#[part19]
#filename=/dev/nvme7n1
#numa_cpu_nodes=0

#[part20]
#filename=/dev/nvme19n1
#numa_cpu_nodes=1

#[part21]
#filename=/dev/nvme9n1

#numa_cpu_nodes=0

#[part22]
#filename=/dev/nvme21n1
#numa cpu nodes=1

#[part23]
#filename=/dev/nvme11n1
#numa_cpu_nodes=0

#[part24]
#filename=/dev/nvme23n1
#numa cpu nodes=1

b. Sequential read configuration file:

[global] name=1m_sequential_read scramble buffers=1 buffered=0 sync=0 ioengine=libaio norandommap do verify=0 randrepeat=0 random_generator=tausworthe64 offset=0 thinktime=0 time based=1 ramp_time=5m direct=1 overwrite=0 group reporting=1 bs=1024k blockalign=4k rw=read numa cpu nodes=0 cpus_allowed_policy=shared iodepth=32 numjobs=1 runtime=5m [part1] filename=/dev/nvme0n1 numa_cpu_nodes=0 [part2] filename=/dev/nvme12n1 numa cpu nodes=1 [part3] filename=/dev/nvme2n1 numa_cpu_nodes=0 [part4] filename=/dev/nvme14n1 numa_cpu_nodes=1 [part5]

filename=/dev/nvme4n1
numa_cpu_nodes=0

[part6]
filename=/dev/nvme16n1

numa_cpu_nodes=1

[part7]
filename=/dev/nvme6n1
numa_cpu_nodes=0

[part8]
filename=/dev/nvme18n1
numa_cpu_nodes=1

#[part9]
#filename=/dev/nvme8n1
#numa cpu nodes=0

#[part10]
#filename=/dev/nvme20n1
#numa_cpu_nodes=1

#[part11]
#filename=/dev/nvme10n1
#numa cpu nodes=0

#[part12]
#filename=/dev/nvme22n1
#numa_cpu_nodes=1

#[part13]
#filename=/dev/nvme1n1
#numa cpu nodes=0

#[part14]
#filename=/dev/nvme13n1
#numa_cpu_nodes=1

#[part15]
#filename=/dev/nvme3n1
#numa_cpu_nodes=0

#[part16]
#filename=/dev/nvme15n1
#numa cpu nodes=1

#[part17]
#filename=/dev/nvme5n1
#numa_cpu_nodes=0

#[part18]
#filename=/dev/nvme17n1
#numa_cpu_nodes=1

#[part19]
#filename=/dev/nvme7n1
#numa_cpu_nodes=0

#[part20]
#filename=/dev/nvme19n1
#numa_cpu_nodes=1

#[part21]
#filename=/dev/nvme9n1
#numa_cpu_nodes=0

#[part22]
#filename=/dev/nvme21n1
#numa cpu nodes=1

#[part23]

#filename=/dev/nvme11n1
#numa cpu nodes=0

#[part24]
#filename=/dev/nvme23n1
#numa_cpu_nodes=1

c. Sequential write configuration file:

[global] name=1m_sequential_write scramble buffers=1 buffered=0 sync=0 ioengine=libaio norandommap do verify=0 randrepeat=0 random_generator=tausworthe64 offset=0 thinktime=0 time_based=1 ramp_time=5m direct=1 overwrite=0 group reporting=1 bs=1024k blockalign=4k rw=write numa_cpu_nodes=0 cpus_allowed_policy=shared iodepth=32 numjobs=1 runtime=5m [part1] filename=/dev/nvme0n1 numa_cpu_nodes=0 [part2] filename=/dev/nvme12n1 numa_cpu_nodes=1 [part3] filename=/dev/nvme2n1 numa_cpu_nodes=0 [part4] filename=/dev/nvme14n1 numa_cpu_nodes=1 [part5] filename=/dev/nvme4n1 numa_cpu_nodes=0 [part6] filename=/dev/nvme16n1 numa_cpu_nodes=1 [part7] filename=/dev/nvme6n1 numa_cpu_nodes=0 [part8]

filename=/dev/nvme18n1

numa_cpu_nodes=1

#[part9]
#filename=/dev/nvme8n1
#numa cpu nodes=0

#[part10]
#filename=/dev/nvme20n1
#numa_cpu_nodes=1

#[part11]
#filename=/dev/nvme10n1
#numa cpu nodes=0

#[part12]
#filename=/dev/nvme22n1
#numa_cpu_nodes=1

#[part13]
#filename=/dev/nvme1n1
#numa cpu nodes=0

#[part14]
#filename=/dev/nvme13n1
#numa_cpu_nodes=1

#[part15]
#filename=/dev/nvme3n1
#numa_cpu_nodes=0

#[part16]
#filename=/dev/nvme15n1
#numa_cpu_nodes=1

#[part17]
#filename=/dev/nvme5n1
#numa_cpu_nodes=0

#[part18]
#filename=/dev/nvme17n1
#numa cpu nodes=1

#[part19]
#filename=/dev/nvme7n1
#numa_cpu_nodes=0

#[part20]
#filename=/dev/nvme19n1
#numa_cpu_nodes=1

#[part21]
#filename=/dev/nvme9n1
#numa_cpu_nodes=0

#[part22]
#filename=/dev/nvme21n1
#numa cpu nodes=1

#[part23]
#filename=/dev/nvme11n1
#numa_cpu_nodes=0

#[part24]
#filename=/dev/nvme23n1
#numa cpu nodes=1

Table 6: Parameters we adjusted for each test.

System	Workload	Drives	Cores	numjobs	iodepth
R740xd	Random read	8	8	4	16
R740xd	Random read	8	16	4	16
R740xd	Random read	8	36	4	16
R740xd	Random read	12	8	4	16
R740xd	Random read	12	16	4	16
R740xd	Random read	12	36	4	16
R740xd	Random read	24	8	4	16
R740xd	Random read	24	16	4	16
R740xd	Random read	24	36	4	16
R740xd	Random write	8	8	8	32
R740xd	Random write	8	16	8	32
R740xd	Random write	8	36	8	32
R740xd	Random write	12	8	8	32
R740xd	Random write	12	16	8	32
R740xd	Random write	12	36	8	32
R740xd	Random write	24	8	8	32
R740xd	Random write	24	16	8	32
R740xd	Random write	24	36	8	32
R740xd	Sequential read	8	8	1	32
R740xd	Sequential read	8	16	1	32
R740xd	Sequential read	8	36	1	32
R740xd	Sequential read	12	8	1	32
R740xd	Sequential read	12	16	1	32
R740xd	Sequential read	12	36	1	32
R740xd	Sequential read	24	8	1	32
R740xd	Sequential read	24	16	1	32
R740xd	Sequential read	24	36	1	32
R740xd	Sequential write	8	8	1	32
R740xd	Sequential write	8	16	1	32
R740xd	Sequential write	8	36	1	32
R740xd	Sequential write	12	8	1	32
R740xd	Sequential write	12	16	1	32
R740xd	Sequential write	12	36	1	32
R740xd	Sequential write	24	8	1	32
R740xd	Sequential write	24	16	1	32
R740xd	Sequential write	24	36	1	32
R750	Random read	8	8	4	32
R750	Random read	8	16	4	32
R750	Random read	8	36	8	64
R750	Random read	8	56	8	64
R750	Random read	12	8	4	32
R750	Random read	12	16	4	32
R750	Random read	12	36	8	64

R750	Random read	12	56	8	64
R750	Random read	24	8	4	32
R750	Random read	24	16	4	32
R750	Random read	24	36	4	32
R750	Random read	24	56	4	32
R750	Random write	8	8	2	4
R750	Random write	8	16	2	4
R750	Random write	8	36	2	4
R750	Random write	8	56	2	4
R750	Random write	12	8	2	4
R750	Random write	12	16	2	4
R750	Random write	12	36	2	4
R750	Random write	12	56	2	4
R750	Random write	24	8	2	4
R750	Random write	24	16	2	4
R750	Random write	24	36	2	4
R750	Random write	24	56	2	4
R750	Sequential read	8	8	1	32
R750	Sequential read	8	16	1	32
R750	Sequential read	8	36	1	32
R750	Sequential read	8	56	1	32
R750	Sequential read	12	8	1	32
R750	Sequential read	12	16	1	32
R750	Sequential read	12	36	1	32
R750	Sequential read	12	56	1	32
R750	Sequential read	24	8	1	32
R750	Sequential read	24	16	1	32
R750	Sequential read	24	36	1	32
R750	Sequential read	24	56	1	32
R750	Sequential write	8	8	1	32
R750	Sequential write	8	16	1	32
R750	Sequential write	8	36	1	32
R750	Sequential write	8	56	1	32
R750	Sequential write	12	8	1	32
R750	Sequential write	12	16	1	32
R750	Sequential write	12	36	1	32
R750	Sequential write	12	56	1	32
R750	Sequential write	24	8	1	32
R750	Sequential write	24	16	1	32
R750	Sequential write	24	36	1	32
R750	Sequential write	24	56	1	32

- 3. To optimize and run the NVMe drives, install the appropriate software, and create the bash scripts. Note: You must rerun these after every reboot.
 - a. Create the fixnyme.sh bash script file on each server:

```
nvme set-feature /dev/nvme0 -f=8 --value=0x108
nvme set-feature /dev/nvme1 -f=8 --value=0x108
nvme set-feature /dev/nvme2 -f=8 --value=0x108
nvme set-feature /dev/nvme3 -f=8 --value=0x108
nvme set-feature /dev/nvme4 -f=8 --value=0x108
nvme set-feature /dev/nvme5 -f=8 --value=0x108
nvme set-feature /dev/nvme6 -f=8 --value=0x108
nvme set-feature /dev/nvme7 -f=8 --value=0x108
nvme set-feature /dev/nvme8 -f=8 --value=0x108
nvme set-feature /dev/nvme9 -f=8 --value=0x108
nvme set-feature /dev/nvme10 -f=8 --value=0x108
nvme set-feature /dev/nvme11 -f=8 --value=0x108
nvme set-feature /dev/nvme12 -f=8 --value=0x108
nvme set-feature /dev/nvme13 -f=8 --value=0x108
nvme set-feature /dev/nvme14 -f=8 --value=0x108
nvme set-feature /dev/nvme15 -f=8 --value=0x108
nvme set-feature /dev/nvme16 -f=8 --value=0x108
nvme set-feature /dev/nvme17 -f=8 --value=0x108
nvme set-feature /dev/nvme18 -f=8 --value=0x108
nvme set-feature /dev/nvme19 -f=8 --value=0x108
nvme set-feature /dev/nvme20 -f=8 --value=0x108
nvme set-feature /dev/nvme21 -f=8 --value=0x108
nvme set-feature /dev/nvme22 -f=8 --value=0x108
nvme set-feature /dev/nvme23 -f=8 --value=0x108
```

b. To install the appropriate software, enter the following commands for each server:

```
yum install nvme-cli
chmod a+x *.sh
```

- 4. Adjust the number of cores per processor as desired, by performing the following steps:
 - a. At the virtual console, click Boot.
 - b. Click BIOS setup.
 - c. Click Yes.
 - d. At the console, enter the command reboot.
 - e. At the System Setup Main Menu, click System BIOS.
 - f. At the System BIOS menu, click Processor Settings.
 - g. At the Processor Settings menu, click the down arrow, next to Number of Cores per Processor, and select half the number of cores that you want to work with (two processors together will give you the total cores you want).
 - h. Click Back.
 - i. Click Finish.
 - j. At the Warning Saving Changes dialogue box, click Yes.
 - k. At the Success Saving Changes dialogue box, click OK.
 - I. Click Finish.
 - m. At the Warning Confirm Exit dialogue box, click Yes.
- 5. After the system boots, run your tests using the bash scripts by entering the following commands at the console:

```
./fixnvme.sh
./Get_Sys_Info_NVMeDir.sh
./runtest.sh <desired fio test config> <number of processors configured> <test number> 60
```

6. View your results in the created, appropriately named directory.

Read the report at https://facts.pt/yjZGZ6O

This project was commissioned by Dell Technologies.

Facts matter.®

Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:

Discussion of WARKANTIES; LIMITATION OF LIABILITY: Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of the possibility of such damages. In no event shall Principled Technologies, Inc.'s liability, including for direct damages, exceed the amounts paid in connection with Principled Technologies, Inc.'s testing. Customer's sole and exclusive remedies are as set forth herein.