

iSCSI 1Gb Software Initiator performance analysis

Executive summary

Software-based iSCSI initiators can provide effective lowcost iSCSI solutions for applications that are not CPU intensive, and they offer throughput results comparable to those of more expensive hardware-based iSCSI offloading technologies.

Dell Inc. (Dell) commissioned Principled Technologies (PT) to compare the CPU usage and throughput results of software-based iSCSI initiators (Software Initiator), TCP offload engines (TOE), and host bus adapters (HBA) in large and small block tests on the 1Gb Broadcom BCM5708C NetXtreme II GigE network card.

We used lometer as the benchmarking tool. lometer measures input/output (I/O) on single and clustered systems. We provide more information about our lometer setup and configuration in the Test methodology section of this report.

We created nine custom lometer access specifications: small block specifications measured Web file server, media streaming, SQL Server log, operating system (OS) paging, Web server, Exchange email, and OS drive performance on 4K, 8K and 64K block size I/Os; large block specifications measured video on demand and decision support system performance on 512K and 1MB I/Os.

KEY FINDINGS

- Based on our testing, Software Initiators provide effective low-cost iSCSI solutions for applications that are not CPU intensive, while HBA's offer the best iSCSI solution for CPU-intensive applications.
- Based on our testing, Software Initiators are effective and economic choices for large block workloads, while HBAs are effective choices for small block workloads.
- In 1Gb Broadcom testing with large block access specifications, the Software Initiator delivered MB-per-second results comparable to those of HBA while utilizing an acceptable level of CPU usage. (See Figure 1.)
- In 1Gb Broadcom testing with small block access specifications, the Software Initiator delivered IOPS results comparable to those of HBA while utilizing an acceptable level of CPU usage on only five of the ten access specifications. (See Figure 2.)
- Based on our testing, IOPS directly affects CPU utilization. (See Figure 2.)

We chose 8 percent as our threshold for acceptable CPU utilization based on an estimation of the CPU level that

Figure 1: Average CPU utilization and MB-per-second results in our large block tests for the Broadcom NIC using a Software Initiator, TOE, and HBA. The solid green background represents 8 percent CPU usage.

would significantly impact CPU-intensive applications. CPU usage below 8 percent indicates that a Software Initiator is an acceptable iSCSI solution, while CPU usage above that level indicates that an HBA would be the recommended iSCSI solution.

Figure 1 displays large block test results: average CPU usage and MB-per-second output on the 1Gb Broadcom NIC. Each result is the average of the CPU utilization results that lometer reported during individual large block tests.

Figure 2: Average CPU utilization and IOPS results in our large block tests for the Broadcom NIC using a Software Initiator, TOE, and HBA. The solid green background represents 8 percent CPU usage.

Figure 2 shows our small block test results: average CPU usage and IOPS output on the 1Gb Broadcom NIC. Each result is the average of the CPU utilization results that lometer reported during individual large block tests.

Test results

We report the results from both sets of our custom lometer tests: MB-per-second and CPU utilization results from our large block tests, and IOPS and CPU utilization results from our small block tests. For both tests, higher IOPS and MB-per-second numbers are better and lower CPU utilization results are better, with 8 percent CPU usage being the threshold of acceptability. We ran the tests on the 1Gb Broadcom BCM5708C NIC. We also ran the tests on the 1Gb Intel PRO/1000 PT adapter with I/OAT enabled, and we report those results in Appendix B. We ran each test three times and report results from the run that produced the median of the three I/O-per-second results.

In our large block tests, Software Initiator CPU usage remained well under 8 percent for both access specifications: 2.18 percent for Video on Demand 512K and 2.20 percent for DSS 1M. Software Initiator MB-persecond results were higher than those for HBA: 118.29 for Video on Demand 512K and 118.28 for DSS 1M versus 113.42 and 113.41 respectively. These results indicate that, with large block access specifications, the Software Initiator delivers results comparable to those of HBA while utilizing an acceptable level of CPU usage. Based on our testing, Software Initiators are effective and economic choices for large block workloads. Figure 3 displays these results.

lometer test name	MB-per-second results (higher is better)		
	1Gb Software Initiator MB per second	1Gb TOE MB per second	1Gb HBA MB per second
Video on Demand 512K	118.29	118.30	113.42
DSS 1M	118.28	118.29	113.41
	CPU utilization (lower is better)		
	1Gb Software Initiator CPU utilization	1Gb TOE CPU utilization	1Gb HBA CPU utilization
Video on Demand 512K	2.18%	1.52%	0.33%
DSS 1M	2.20%	1.46%	0.28%

Figure 3: MB-per-second and CPU utilization results for the 1Gb Broadcom NIC in our large block tests.

In our small block tests, Software Initiator CPU usage remained under 8 percent for the following five access specifications: Web file server 64K (2.72 percent), Media streaming 64K (3.41 percent), SQL server log 64K (2.28 percent), OS paging 64K (3.56 percent), and Web server log 8K (6.92 percent). For the remaining access specifications, Software Initiator CPU usage ranged from 9.67 percent to 16.03 percent. Software Initiator IOPS results were higher than those of HBA in every access specification. These results indicate that, with small block access specifications, the Software Initiator delivered IOPS results comparable to those of HBA. The Software Initiator CPU usage on 5 of the 10 access specifications, however, was higher than our 8 percent threshold. Based on our testing, HBAs are effective choices for small block workloads. The testing also shows that the IOPS of the workload directly affects CPU utilization. Figure 4 displays these results.

In addition to testing the Broadcom NIC, we also tested a 1Gb Intel PRO/1000 PT Server Adapter with I/O Acceleration Technology (I/OAT) enabled. We present these results in Appendix B.

lometer test name	IOPS results (higher is better)		
	1Gb Software Initiator IOPS	1Gb TOE IOPS	1Gb HBA IOPS
Web file server 4K	23,887.94	23,971.86	23,585.30
Web file server 8K	15,470.48	15,717.42	14,697.55
Web file server 64K	1,991.58	1,991.36	1,907.84
Media streaming 64K	1,918.63	1,926.68	1,830.98
SQL server log 64K	1,891.78	1,890.68	1,808.27
OS paging 64K	2,005.43	2,046.11	1,941.67
Web server log 8K	15,029.60	15,035.99	14,379.91
DB_OLTP 8K	16,131.24	16,282.42	15,277.90
Exchange email 4K	19,057.69	19,074.16	18,837.08
OS drive 8K	16,211.48	16,326.45	15,299.89
	CPU utilization (lower is better)		
	1Gb Software Initiator	1Gb TOE	1Gb HBA
	CPU utilization	CPU utilization	CPU utilization
Web file server 4K	16.03%	20.57%	4.89%
Web file server 8K	9.67%	17.12%	3.95%
Web file server 64K	2.72%	2.64%	0.92%
Media streaming 64K	3.41%	2.54%	1.04%
SQL server log 64K	2.28%	1.93%	1.07%
OS paging 64K	3.56%	2.64%	1.08%
Web server log 8K	6.92%	7.45%	3.66%
DB_OLTP 8K	12.14%	16.03%	4.27%
Exchange email 4K	13.00%	16.21%	4.77%
OS drive 8K	12.36%	16.05%	4.29%

Figure 4: IOPS and CPU utilization results for the 1Gb Broadcom NIC in our small block tests.

iSCSI overview

The Internet Small Computer Systems Interface (iSCSI) protocol is a technology that couples the SCSI standard and TCP/IP protocol to implement an enterprise-class storage area network (SAN). iSCSI allows systems to transfer large block data over the familiar Ethernet technologies that are present in almost every organization. IT staff can leverage existing equipment and knowledge of IP networks to implement high quality SANs, lowering costs and manageability requirements.

iSCSI initiators - their role and differences

An iSCSI implementation must have an initiator (the host) and a target (the drive array). The initiator packages the SCSI commands into packets and sends them over the IP network to the target. Broadly speaking, there are three approaches to the initiator: a pure software initiator with a standard network interface card (NIC), a specialized NIC with a TCP/IP offload engine (TOE), and a host bus adapter (HBA) that fully offloads the iSCSI and TCP/IP work. Offloading functionality and processing to the iSCSI interface card frees up server processing cycles. Figure 5 illustrates these three types of configurations.

Figure 5: Three types of iSCSI initiator implementations.

- **Pure software initiator with a standard NIC.** Every major operating system now contains an iSCSI software initiator. You can establish a connection to an iSCSI SAN with the built-in OS tools and a standard network card. This is an attractive low-cost solution, but you sacrifice some of the host CPU to handle iSCSI and TCP/IP processing overhead.
- NICs with TOE. A NIC with TOE has its own specialized circuitry and processing power that offloads some of the TCP/IP-related overhead from the host CPU, freeing up cycles for other applications. The host still incurs some processing overhead, as it packages SCSI commands and sends them to the NIC.
- Full-offload HBAs. A full-offload iSCSI HBA, with even greater on-board processing power than a NIC with TOE, controls both iSCSI packaging and TCP/IP overhead, relieving the server CPU of both of these activities. HBA provides the most effective iSCSI solution for CPU-intensive applications.

Test configuration

1GBase-T iSCSI

Storage

- Four Dell™ EqualLogic™ PS5000XV iSCSI arrays
- Four separate groups and storage pools, one per array
- Four 500GB logical unit numbers (LUNs), one per storage pool

Switch settings (Dell PowerConnect 6248)

- Jumbo frames enabled (on NIC and all ports on the switch)
- Flow control enabled
- IP routing enabled
- Spanning tree set to rapid spanning tree protocol (RSTP)
- Link layer discovery protocol (LLDP) disabled

Network connections

- Dell EqualLogic PS5000XV Array
 - Three 1Gb connections that we connected from each of the four active controllers to 12 front 1Gb switch ports
- Test Server
 - o One 1Gb connection that we connected to one front 1Gb switch port

lometer settings

- One worker per target (four total)
- 4GB dataset per target (8,388,608 sectors)
- Outstanding I/Os tuned for each access specification

Figure 6 displays the detailed settings for each application we used in our iSCSI initiator tests.

Test pattern	Payload size (KB)	Percentage read	Percentage write	Percentage random	Percentage sequential	Outstanding I/Os
Web file server 4K	4	95	5	75	25	64
Web file server 8K	8	95	5	75	25	28
Web file server 64K	64	95	5	75	25	20
DSS	1,024	100	0	100	0	4
Media streaming	64	98	2	0	100	1
SQL server log	64	0	100	0	100	1
OS paging	64	90	10	0	100	1
Web server log	8	0	100	0	100	12
DB-OLTP	8	70	30	100	0	28
Exchange email	4	67	33	100	0	52
OS drive	8	70	30	100	0	28
Video on demand	512	100	0	100	0	4

Figure 6: Detailed settings for each application we used in our iSCSI initiator tests.

Test methodology

Installing and configuring lometer

- 1. Download the lometer package from <u>www.iometer.org</u>.
- 2. Uncompress the files, and copy lometer.exe, Dynamo.exe, and iometer.icf to c:\iometer.
- 3. Open lometer.exe.

- 4. Verify that for Disk Targets, the # of Outstanding I/Os is set to the appropriate value.
- 5. Under Results Display, make sure that lometer has selected Start of Test, and set the update frequency to ∞.
- 6. Under Test Setup, set the Run Time to 4 minutes and the Ramp Up Time to 60 seconds.
- 7. Exit lometer.

Setting up the individual lometer workloads

We set up lometer using the test patterns shown in Figure 6. The test patterns defined the payload size, the percent read, percent write, percent random, percent sequential, and outstanding I/Os. In addition, we used the following settings for each test:

- Burstiness
 - o Transfer Delay: 0ms
 - Burst Length: 1 I/O
- Align I/Os on: Sector Boundaries
- Reply Size: No Reply

1Gb NIC iSCSI

Setup

- 1. To run the Broadcom Advanced Control Suite, right-click the tray icon, and select Launch BACS.
- 2. Select the Broadcom NetXtreme II C-NIC iSCSI Adapter.
- 3. Select the Configurations tab.
- 4. Set the IPv4 DHCP to Disable.
- 5. Set the IP Address to 192.168.1.78
- 6. Set the Subnet Mask to 255.255.0
- 7. Click Apply.
- 8. Close the BACS.
- 9. Click Start→Control Panel.
- 10. Double-click Network and Sharing Center.
- 11. Click Manage network connections.
- 12. Right-click Broadcom BCM5708C NetXtreme II GigE, and select Properties.
- 13. Double-click Internet Protocol Version 4 (TCP/IPv4).
- 14. Select Use the following IP address.
- 15. Set the IP Address to 192.168.1.65
- 16. Set the Subnet Mask to 255.255.0
- 17. Click OK.
- 18. Click OK.
- 19. Right-click Intel PRO/1000 PT Server Adapter, and select Properties.
- 20. Double-click Internet Protocol Version 4 (TCP/IPv4).
- 21. Select Use the following IP address.
- 22. Set the IP Address to 192.168.1.66
- 23. Set the Subnet Mask to 255.255.255.0
- 24. Click OK.
- 25. Click OK.

1Gb Broadcom BCM5708C Software Initiator with TOE disabled

- 1. Connect the network cable to the Broadcom BCM5708C network port.
- 2. Restart the computer.
- 3. Click Start→Administrative Tools→iSCSI Initiator.
- 4. Select the Targets tab.
 - a. Select the first target, and click Log on.
 - b. Click Advanced.
 - c. Set the Local Adapter to Microsoft iSCSI Initiator.

- d. Set the Source IP to 192.168.1.65
- e. Set the Target Portal to 192.168.1.251 / 3260
- f. Click OK.
- g. Click OK.
- h. Click OK.
- i. Repeat steps a through h two more times, for a total of three times.
- j. Select the second target, and click Log on.
- k. Click Advanced.
- I. Set the Local Adapter to Microsoft iSCSI Initiator.
- m. Set the Source IP to 192.168.1.65
- n. Set the Target Portal to 192.168.1.251 / 3260
- o. Click OK.
- p. Click OK.
- q. Click OK.
- r. Repeat steps j through q two more times, for a total of three times.
- s. Select the third target, and click Log on.
- t. Click Advanced.
- u. Set the Local Adapter to Microsoft iSCSI Initiator.
- v. Set the Source IP to 192.168.1.65
- w. Set the Target Portal to 192.168.1.251 / 3260
- x. Click OK.
- y. Click OK.
- z. Click OK.
- aa. Repeat steps s through z two more times, for a total of three times.
- bb. Select the fourth target, and click Log on.
- cc. Click Advanced.
- dd. Set the Local adapter to Microsoft iSCSI Initiator.
- ee. Set the Source IP to 192.168.1.65
- ff. Set the Target Portal to 192.168.1.251 / 3260
- gg. Click OK.
- hh. Click OK.
- ii. Click OK.
- 5. To open a command prompt window, click the shortcut on the desktop.
- 6. Type netsh int tcp set global chimney=disabled into the command prompt, and press Enter.
- 7. To confirm that the system is not offloading any connections, type netstat -nt | findstr /i offloaded into the command prompt, and press Enter. If it lists connections, then the system is not offloading any connections.
- 8. Open a command prompt.
- 9. Type cd c:\lometer and press Enter.
- 10. Type Test1.bat
- 11. Wait 5 minutes.
- 12. Press Enter.
- 13. Copy the result files from the server.
- 14. Repeat steps 8 through 13 two more times, for a total of three runs.

1Gb Broadcom BCM5708C Software Initiator with TOE enabled

- 1. Connect the network cable to the Broadcom BCM5708C network port.
- 2. To open a command prompt window, click the shortcut on the desktop.
- 3. Type netsh int tcp set global chimney=enabled into the command prompt, and press Enter.
- 4. Restart the computer.
- 5. Click Start→Administrative Tools→iSCSI Initiator.
- 6. Select the Targets tab.
 - a. Select the first target, and click Log on.
 - b. Click Advanced.

- c. Set the Local Adapter to Microsoft iSCSI Initiator.
- d. Set the Source IP to 192.168.1.65
- e. Set the Target Portal to 192.168.1.251 / 3260
- f. Click OK.
- g. Click OK.
- h. Click OK.
- i. Repeat steps a through h two more times, for a total of three times.
- j. Select the second target, and click Log on.
- k. Click Advanced.
- I. Set the Local Adapter to Microsoft iSCSI Initiator.
- m. Set the Source IP to 192.168.1.65
- n. Set the Target Portal to 192.168.1.251 / 3260
- o. Click OK.
- p. Click OK.
- q. Click OK.
- r. Repeat steps j through q two more times, for a total of three times.
- s. Select the third target, and click Log on.
- t. Click Advanced.
- u. Set the Local Adapter to Microsoft iSCSI Initiator.
- v. Set the Source IP to 192.168.1.65
- w. Set the Target Portal to 192.168.1.251 / 3260
- x. Click OK.
- y. Click OK.
- z. Click OK.
- aa. Repeat steps s through z two more times, for a total of three times.
- bb. Select the fourth target, and click Log on.
- cc. Click Advanced.
- dd. Set the Local Adapter to Microsoft iSCSI Initiator.
- ee. Set the Source IP to 192.168.1.65
- ff. Set the Target Portal to 192.168.1.251 / 3260
- gg. Click OK.
- hh. Click OK.
- ii. Click OK.
- 7. To confirm that the system is offloading connections, type netstat -nt | findstr /i offloaded into the command prompt, and press Enter. It must list at least four connections to confirm that the system has enabled TCP/IP offload, and that TCP/IP offload is working properly.
- 8. Open a command prompt.
- 9. Type cd c:\lometer and press Enter.
- 10. Type Test1.bat
- 11. Wait 5 minutes.
- 12. Press Enter.
- 13. Copy the result files from the server.
- 14. Repeat steps 8 through 13 two more times, for a total of three runs.

1Gb Broadcom BCM5708C iSCSI HBA (iSOE)

- 1. Connect the network cable to the Broadcom BCM5708C network port.
- 2. Restart the computer.
- 3. Click Start→Administrative Tools→iSCSI Initiator.
- 4. Select the Targets tab.
 - a. Select the first target, and click Log on.
 - b. Click Advanced.
 - c. Set the Local Adapter to Broadcom NetXtreme II C-NIC iSCSI Adapter on PCI bus 3, device 0, function 0.
 - d. Set the Source IP to 192.168.1.78

- e. Set the Target Portal to 192.168.1.251 / 3260
- f. Click OK.
- g. Click OK.
- h. Click OK.
- i. Repeat steps a through h two more times, for a total of three times.
- j. Select the second target, and click Log on.
- k. Click Advanced.
- I. Set the Local Adapter to Broadcom NetXtreme II C-NIC iSCSI Adapter on PCI bus 3, device 0, function 0.
- m. Set the Source IP to 192.168.1.78
- n. Set the Target Portal to 192.168.1.251 / 3260
- o. Click OK.
- p. Click OK.
- q. Click OK.
- r. Repeat steps j through q two more times, for a total of three times.
- s. Select the third target, and click Log on.
- t. Click Advanced.
- u. Set the Local Adapter to Broadcom NetXtreme II C-NIC iSCSI Adapter on PCI bus 3, device 0, function 0.
- v. Set the Source IP to 192.168.1.78
- w. Set the Target Portal to 192.168.1.251 / 3260
- x. Click OK.
- y. Click OK.
- z. Click OK.
- aa. Repeat steps s through z two more times, for a total of three times.
- bb. Select the fourth target, and click Log on.
- cc. Click Advanced.
- dd. Set the Local Adapter to Broadcom NetXtreme II C-NIC iSCSI Adapter on PCI bus 3, device 0, function 0.
- ee. Set the Source IP to 192.168.1.78
- ff. Set the Target Portal to 192.168.1.251 / 3260
- gg. Click OK.
- hh. Click OK.
- ii. Click OK.
- 5. Open a command prompt.
- 6. Type cd c:\lometer and press Enter.
- 7. Type Test1.bat
- 8. Wait 5 minutes.
- 9. Press Enter.
- 10. Copy the result files from the server.
- 11. Repeat steps 5 through 10 two more times, for a total of three runs.

Intel PRO/1000 PT Server Adapter with I/O Acceleration Technology (I/OAT) enabled

- 1. Connect the network cable to the Intel PRO/1000 network port.
- 2. Restart the computer.
- 3. Press F2 to enter the system BIOS.
- 4. Select Integrated Devices.
- 5. Set I/OAT DMA Engine to Enabled.
- 6. Press Escape.
- 7. Press Escape.
- 8. Select Save Changes and Exit.
- 9. Press Enter.
- 10. Click Start→Administrative Tools→iSCSI Initiator.
- 11. Select the Targets Tab.

- a. Select the first target, and click Log on.
- b. Click Advanced.
- c. Set the Local Adapter to Microsoft iSCSI Initiator.
- d. Set the Source IP to 192.168.1.66
- e. Set the Target Portal to 192.168.1.251 / 3260
- f. Click OK.
- g. Click OK.
- h. Click OK.
- i. Repeat steps a through h two more times, for a total of three times.
- j. Select the second target, and click Log on.
- k. Click Advanced.
- I. Set the Local Adapter to Microsoft iSCSI Initiator.
- m. Set the Source IP to 192.168.1.66
- n. Set the Target Portal to 192.168.1.251 / 3260
- o. Click OK.
- p. Click OK.
- q. Click OK.
- r. Repeat steps j through q two more times, for a total of three times.
- s. Select the third target, and click Log on.
- t. Click Advanced.
- u. Set the Local Adapter to Microsoft iSCSI Initiator.
- v. Set the Source IP to 192.168.1.66
- w. Set the Target Portal to 192.168.1.251 / 3260
- x. Click OK.
- y. Click OK.
- z. Click OK.
- aa. Repeat steps s through z two more times, for a total of three times.
- bb. Select the fourth target, and click Log on.
- cc. Click Advanced.
- dd. Set the Local Adapter to Microsoft iSCSI Initiator.
- ee. Set the Source IP to 192.168.1.66
- ff. Set the Target Portal to 192.168.1.251 / 3260
- gg. Click OK.
- hh. Click OK.
- ii. Click OK.
- 12. To open a command prompt window, click the shortcut on the desktop.
- 13. Type netsh int tcp set global chimney=disabled into the command prompt, and press Enter.
- 14. To confirm that the system is not offloading any connections, type netstat -nt | findstr /i offloaded into the command prompt, and press Enter. If it lists no connections, then the system is not offloading any connections.
- 15. Open a command prompt.
- 16. Type cd c:\lometer and press Enter.
- 17. Type Test1.bat
- 18. Wait 5 minutes.
- 19. Press Enter.
- 20. Copy the result files from the server.
- 21. Repeat steps 15 through 20 two more times, for a total of three runs.

Appendix A – Test server information Figure 7 provides detailed information for the test servers.

Servers	Dell™ PowerEdge™ 2950		
General			
Number of processor packages	2		
Number of cores per processor package	4		
Number of hardware threads per core	8		
System power management policy	Balanced		
CPU			
Vendor	Intel		
Name	Xeon E5405		
Stepping	C0		
Socket type	LGA771		
Core frequency (GHz)	2.00		
Front-side bus frequency (MHz)	1,333		
L1 cache	32 KB + 32 KB (per core)		
L2 cache	12 MB (2 x 6 MB)		
Platform	,		
Vendor and model number	Dell 0M332H		
Motherboard chipset	Intel 5000X		
BIOS name and version	Dell 2.5.0 (09/12/2008)		
BIOS settings	Default		
Memory module(s)			
Vendor and model number	Samsung M395T5750EZ4-CE66		
Туре	PC2-5300 FB-DDR2		
Speed (MHz)	667		
Speed in the system currently running @ (MHz)	667		
Timing/latency (tCL-tRCD-iRP-tRASmin)	5-5-5-15		
Size (GB)	16,384		
Number of RAM modules	8		
Chip organization	Double-sided		
Channel	Dual		
Hard disk			
Vendor and model number	Western Digital WD800AAJS		
Number of disks in system	1		
Size (GB)	80		
Buffer size (MB)	8		
RPM	7,200		
Туре	SATA 3.0 Gb/s		
Controller	Intel 6321ESB		
Controller driver	Microsoft 6.0.6001.18000 (06/21/2006)		
Operating system			
Name	Windows Server 2008 Enterprise x64		
Build number	6001		
Service Pack	1		
Microsoft Windows update date	12/09/08		
File system	NTFS		
Kernel	ACPI x64-based PC		
Language	English		
Microsoft DirectX version	10		

Servers	Dell™ PowerEdge™ 2950	
Graphics		
Vendor and model number	ATI ES1000	
Chipset	ATI ES1000	
BIOS version	BK-ATI VER.008.005.028.000	
Туре	Integrated	
Memory size (MB)	16	
Resolution	1,280 x 1,024	
Driver	ATI 8.240.50.3000 (01/21/2008)	
Network card/subsystem		
First network card/subsystem		
Network card	Broadcom BCM5708C NetXtreme II GigE	
Туре	Integrated	
Network driver	Broadcom 4.6.14.0 (10/16/2008)	
iSCSI driver	Broadcom 4.6.15.0 (10/20/2008)	
Second network card/subsystem		
Network card	Intel PRO/1000 PT Server Adapter	
Туре	Discrete	
Network driver	Intel 9.12.30.0 (09/26/2008)	
Optical drive		
Vendor and model number	Teac CD-224E-N	
Туре	CD-ROM	
Interface	EIDE	
Dual/single layer	Single	
USB ports		
Number of ports	4	
Type of ports (USB 1.1, USB 2.0)	2.0	

Figure 7: Detailed system configuration for the test server.

Appendix B – Intel 1Gb Server Adapter test results

In addition to testing the Broadcom NIC, we also tested a 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled. We invoked I/OAT network accelerations by setting the I/OAT DMA engine BIOS setting to enabled. Our goal in running these tests was to show the CPU usage, MB-per-second results, and IOPS results for the 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled.

Figures 8 through 11 present our large and small block test results for the 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled. We ran each test three times and report the run that produced the median of the three results. We set 8 percent as our threshold for acceptable CPU utilization.

Figure 8 shows our large block test results: average CPU usage and MB-persecond output during large block tests on the 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled. Each result is the average of the CPU utilization results that lometer reported during individual large block tests. Higher MB-per-second and lower CPU utilization results are better.

In our large block tests, CPU usage for the 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled remained well under 8 percent for both access

Figure 8: IOPS and CPU results for the Intel 1Gb AT Server Adapter with I/OAT enabled in our large block tests. The solid green background represents 8 percent CPU usage.

specifications: 1.88 percent for Video on Demand 512K and 1.85 percent for DSS 1M. MB-per-second results were identical: 118.28 for both Video on Demand 512K and DSS 1M. Figure 9 displays these results.

lometer test name	MB-per-second results (higher is better)	
	1Gb PRO/1000 PT	
	(I/OAT enabled)	
	INIB per second	
Video on Demand 512K	118.28	
DSS 1M	118.28	
	CPU utilization (lower is better)	
	1Gb PRO/1000 PT	
	(I/OAT enabled)	
	CPU utilization	
Video on Demand 512K	1.88%	
DSS 1M	1.85%	

Figure 9: MB-per-second and CPU utilization results for the 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled in our large block tests.

Figure 10: IOPS and CPU results for the 1Gb Intel PRO/1000 PT Server Adapter with I/OAT enabled and disabled in our small block tests. The solid green background represents 8 percent CPU usage.

Figure 10 shows our small block test results: average CPU usage and IOPS output during small block tests on the 1Gb Intel PRO/1000 AT Server Adapter with I/OAT enabled. Each result is the average of the CPU utilization results that Iometer reported during individual small block tests.

In our small block tests, CPU usage for the 1Gb Intel PRO/1000 AT Server Adapter with I/OAT enabled remained under 8 percent for the following five access specifications: Web file server 64K (2.28 percent), Media streaming 64K (2.57 percent), SQL server log 64K (2.50 percent), OS paging 64K (2.90 percent), and Web

server log 8K (6.17 percent). For the remaining access specifications, CPU usage for the 1Gb Intel PRO/1000 AT Server Adapter with I/OAT enabled ranged from 8.73 percent to 11.55 percent. Figure 11 displays these results.

lometer test name	IOPS results (higher is better)
	1Gb PRO/1000 PT
	(I/OAT enabled)
	IOPS
Web file server 4K	23,990.55
Web file server 8K	15,519.95
Web file server 64K	1,991.68
Media streaming 64K	1,900.07
SQL server log 64K	1,740.92
OS paging 64K	1,959.65
Web server log 8K	13,910.46
DB_OLTP 8K	16,002.29
Exchange email 4K	19,053.80
OS drive 8K	16,033.91
	CPU utilization (lower is better)
	1Gb PRO/1000 PT
	(I/OAT enabled)
	CPU utilization
Web file server 4K	11.55%
Web file server 8K	8.73%
Web file server 64K	2.28%
Media streaming 64K	2.57%
SQL server log 64K	2.50%
OS paging 64K	2.90%
Web server log 8K	6.17%

	CPU utilization (lower is better)
DB_OLTP 8K	9.99%
Exchange email 4K	10.09%
OS drive 8K	9.19%

Figure 11: IOPS and CPU utilization results for our small block tests on the 1Gb Intel PRO/1000 PT Server Adapter.

About Principled Technologies

We provide industry-leading technology assessment and fact-based marketing services. We bring to every assignment extensive experience with and expertise in all aspects of technology testing and analysis, from researching new technologies, to developing new methodologies, to testing with existing and new tools. When the assessment is complete, we know how to present the results to a broad range of target audiences. We provide our clients with the materials they need, from market-focused data to use in their own collateral to custom sales aids, such as test reports, performance assessments, and white papers. Every document reflects the results of our trusted independent analysis.

We provide customized services that focus on our clients' individual requirements. Whether the technology involves hardware, software, Web sites, or services, we offer the experience, expertise, and tools to help you assess how it will fare against its competition, its performance, whether it's ready to go to market, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked together in technology assessment for over 20 years. As journalists, they published over a thousand articles on a wide array of technology subjects. They created and led the Ziff-Davis Benchmark Operation, which developed such industry-standard benchmarks as Ziff Davis Media's Winstone and WebBench. They founded and led eTesting Labs, and after the acquisition of that company by Lionbridge Technologies were the head and CTO of VeriTest.

Principled Technologies, Inc. 1007 Slater Road, Suite 250 Durham, NC 27703 www.principledtechnologies.com info@principledtechnologies.com

Principled Technologies is a registered trademark of Principled Technologies, Inc. Intel, Xeon, and Pentium are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.*All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:

PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER, PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE. ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC.'S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.'S TESTING. CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.