A Principled Technologies report: Hands-on testing. Real-world results.

: L = - The science behind the report:
Accelerate your containerized

workloads with VMware vSphere
Kubernetes Service

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Accelerate your containerized workloads with VMware vSphere
Kubernetes Service.

We concluded our hands-on testing on November 19, 2025. During testing, we determined the appropriate
hardware and software configurations and applied updates as they became available. The results in this report
reflect configurations that we finalized on November 19, 2025 or earlier. Unavoidably, these configurations may
not represent the latest versions available when this report appears.

Our results

To learn more about how we have calculated the wins in this report, go to http://facts.pt/calculating-and-highlighting-wins.
Unless we state otherwise, we have followed the rules and principles we outline in that document.

Table 1: Kafka producer workload results from the VMware vSphere Kubernetes Service (VKS) solution and two Red Hat OpenShift Container
Platform (OCP) configurations. Higher throughput and lower latency are better Source: PT.

VMware®
Red Hat® OpenShift® .
® o
vSphere Container Platfor VKS win % vs. OCP

Kubernetes (virtualized on VCF) (virtualized)

Red Hat OpenShift
Container Platform
(bare metal)

VKS win % vs.
OCP (bare metal)

Service
One topic
Throughput 221.42 222.84 -0.64% 221.43 -0.01%
(MB/sec)
Latency (ms) 1.84 1.51 -21.85% 1.99 7.54%
Two topics
Throughput 436.56 445.62 -2.03% 420.10 3.92%
(MB/sec)
Latency (ms) 2.47 3.71 33.33% 6.64 62.77%
Four topics
Throughput 845.04 843.04 0.24% 723.01 16.88%
(MB/sec)

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026

https://facts.pt/tnxPFRo
https://facts.pt/tnxPFRo
https://facts.pt/tnxPFRo
https://www.principledtechnologies.com
https://facts.pt/calculating-and-highlighting-wins

VMware®
Red Hat® OpenShift® . Red Hat OpenShift .
® [+ [+
vKSphere Container Platform VI.<S win e el Container Platform L I
ubernetes (virtualized on VCF) (virtualized) (bare metal) OCP (bare metal)

Service
Latency (ms) 8.24 14.20 41.96% 39.00 78.87%
Six topics
(Tth’/zggF’“t 1,202.66 1,146.54 4.89% 870.81 38.11%
Latency (ms) 22.51 117.91 80.91% 79.62 71.73%
Eight topics
(Tth’/zggF’“t 1,450.24 1,232.84 17.63% 833.72 73.95%
Latency (ms) 106.06 176.88 40.04% 156.99 32.44%

Table 2: HammerDB results from the VKS solution and two OCP configurations. Note that we did not gather latency data on the virtualized
OCP solution, so we cannot report it here. Source: PT.

Red Hat OpenShift Red Hat OpenShift

VMware vSphere ¥ VKS win % vs. OCP ¥ VKS win % vs. OCP
Kubernetes Service (CefiElin e (virtualized) oIy [l (bare metal)
(virtualized on VCF) (bare metal)
New orders per o o
minute (NOPM) 112,947 105,706 6.85% 62,459 80.83%
Latency (ms) 18.33 N/A N/A 66.57 72.46%

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 2

System configuration information

Table 3: Detailed information on the systems we tested.

System configuration information

Dell™ PowerEdge™ R640

VCF - 4 nodes

OCP -4 nodes

BIOS name and version

Dell 2.22.2

Dell 2.22.2

Non-default BIOS settings

None

None

Operating system name and version/build number

VMware ESXi™ 9.0.1.0, 24957456

OpenShift Container Platform 4.19

Date of last OS updates/patches applied

28 October 2025

28 October 2025

Power management policy Performance Performance
Processor
Number of processors 2 2

Vendor and model

Intel® Xeon® Platinum 8260

Intel Xeon Platinum 8260

Core count (per processor) 24 24
Core frequency (GHz) 2.4 2.4
Stepping 7 7
Memory module(s)

Total memory in system (GB) 768 768
Number of memory modules 24 24

Vendor and model

Hynix HMA84GR7CJR4N-WM

Hynix HMA84GR7CJR4N-WM

Size (GB) 32 32

Type DDR4 DDR4

Speed (MHz) 2933 2933

Speed running in the server (MHz) 2933 2933
Storage controller 1

Vendor and model Dell BOSS-S1 Dell BOSS-S1
Cache size (GB) 0 0

Firmware version 2.5.13 3024 2.5.13 3024

Driver version

Storage controller 2

Vendor and model

Dell HBA330 Mini (Embedded)

Dell HBA330 Mini (Embedded)

Cache size (GB)

0

0

Firmware version

16.17.01 00

16.17.01 00

Local storage for OS (type A)

Number of drives

1

1

Drive vendor and model

Intel SSDSCKKB240G8R

Intel SSDSCKKB240G8R

Accelerate your containerized workloads with VMware vSphere Kubernetes Service

January 2026 | 3

System configuration information

Dell™ PowerEdge™ R640

VCF - 4 nodes

OCP - 4 nodes

Drive size (GB)

240

240

Drive information (speed, interface, type)

6Gbps, M2, SSD

6Gbps, M2, SSD

Local storage for distributed storage (type B)

Number of drives

4

4

Drive vendor and model

Dell Express Flash NVMe P4500

Dell Express Flash NVMe P4500

Drive size (GB)

4

4

Drive information (speed, interface, type)

8GT/s, PCle 3.0, NVMe 1.2

8GT/s, PCle 3.0, NVMe 1.2

Network adapter 1

Vendor and model

Mellanox ConnectX-4 LX 25GbE SFP

Mellanox ConnectX-4 LX 25GbE SFP

Number and type of ports

2 x 25GbE

2 x 25GbE

Driver version

14.32.20.04

14.32.20.04

Network adapter 2

Vendor and model

Mellanox ConnectX-5 Ex 100GbE

Mellanox ConnectX-5 Ex 100GbE

QSFP QSFP
Number and type of ports 2 x 100GbE 2 x 100GbE
Driver version 16.35.30.06 16.35.30.06
Cooling fans
Vendor and model Dell Dell
Number of cooling fans 8 8
Power supplies
Vendor and model Dell 0CMPGM Dell OCMPGM
Number of power supplies 2 2
Wattage of each (W) 1100 1100

Accelerate your containerized workloads with VMware vSphere Kubernetes Service

January 2026 | 4

How we tested

Initial testbed deployment and configuration

Broadcom provided two four-node Dell PowerEdge R640 clusters with identical hardware to perform these tests. Broadcom had fully set
up the VCF cluster when we received it, and we validated the hardware configuration. The cluster included VMware vSAN with four P4500
disks per node and cluster networking with two 25Gb connections in a virtual distributed switch with port groups for vMotion, vSAN, VM,
and Management traffic. The VCF cluster also had VKS enabled, so the only customization we did was create a VM class with 48 vCPUs
and 512 GB of RAM.

We received the OCP cluster after Broadcom had already configured the cluster installation process, and we validated the hardware
configuration. This cluster contained a shared storage pool across all four nodes using OpenShift Data Foundation and the Local Storage
operator, so we did not need to perform any infrastructure modifications.

Testing with Kafka
Configuring VKS for Kafka testing

Before we could deploy Kafka on VKS, we needed to add worker nodes to handle the load and connect to those worker nodes. Our steps
consisted of the following:

1. Create a context for the new VKS cluster, and use it:

vcf context create pt --endpoint [your supervisor IP address] --insecure-skip-tls-verify -u [a
vSphere username with permissions to make changes]
vcf context use pt

2. Create the new VKS cluster:

kubectl apply -f kafka-vks.yaml

3. Connect to the VKS cluster:

vcf context create vks --endpoint [your supervisor IP address] --insecure-skip-tls-verify -u [a
vSphere username with permissions to make changes] --workload-cluster-namespace=kafka --workload-
cluster-name=kafka-cluster-vks

vcf context use vks:kafka-cluster-vks

Deploying Kafka

1. Create the namespace for your Kafka cluster, and set it as your default:

kubectl create namespace strimzi
kubectl config set-context --current --namespace=strimzi

2. Using Helm, deploy the Strimzi Kafka operator:

helm install strimzi-cluster-operator oci://quay.io/strimzi-helm/strimzi-kafka-operator

3. Deploy the Kafka cluster:

kubectl apply -f kafka-cluster.yaml

4. Create a client pod with the benchmarking software installed:

kubectl apply -f client-pod.yaml

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 5

Running the benchmark

1.

Connect to the Kafka client:

‘ kubectl exec -it ubuntu -- /bin/bash ‘

In the Kafka client, navigate to the scripts directory:

‘ cd /opt/kafka 2.13-3.9.1/bin ‘

Create the topics for the Kafka producer benchmark. If you need to create more than one topic, repeat this step, adding 1 to the topic
number each time you create a topic:

./kafka-topics.sh --create --bootstrap-server="my-cluster-kafka-bootstrap:9092" --topic "test-
topic-1" --partitions 36 --replication-factor 3 --config retention.ms=10800000 --config min.insync.
replicas=2 --config compression.type="uncompressed"

Run the Kafka producer benchmark. If you have created more than one topic, repeat this step and immediately run it, adding 1 to the
topic number, and output file topic number each time you run the test (you may choose to use a for loop to perform this task to ensure
simultaneous operation):

./kafka-producer-perf-test.sh --topic "test-topic-1" --record-size=1024 --throughput=-1 --num-
records=100000000 --producer-props bootstrap.servers="my-cluster-kafka-bootstrap:9092" acks=1 batch.
s1ze=256000 client.id="producer-1" > /tmp/producer-tl.log 2>&l &

When the benchmark is finished, delete the database that the producer benchmark created. If you created more than one topic, repeat
this step, adding 1 to the topic number each time you delete a topic:

./kafka-topics.sh --delete --bootstrap-server " my-cluster-kafka-bootstrap:9092" --topic
" test-topic-1"

Record the results in the /tmp directory before performing a new run.

Testing with HammerDB TPROC-C on PostgreSQL

Configuring VKS for HammerDB testing

Before we could deploy PostgreSQL on VKS, we needed to add worker nodes to handle the load. Our steps consisted of the following:

1.

Create a context for the new VKS cluster, and use it:

vcf context create pt --endpoint [your supervisor IP address] --insecure-skip-tls-verify -u [a
vSphere username with permissions to make changes]
vcf context use pt

Create the new VKS cluster:

kubectl apply -f postgres-vks.yaml

Connect to the VKS cluster:

vcf context create vks --endpoint [your supervisor IP address] --insecure-skip-tls-verify -u [a
vSphere username with permissions to make changes] --workload-cluster-namespace=postgres --workload-
cluster-name=postgres-cluster-vks

vcf context use vks:postgres-cluster-vks

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 6

Deploying PostgreSQL

1. Create a new namespace for PostgreSQL, and set it as default:

kubectl create namespace cnpg-system
kubectl config set-context --current --namespace=cnpg-system

2. Add the PostgreSQL extensions to your Kubernetes deployment:

kubectl apply --server-side -f https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/
release-1.27/releases/cnpg-1.27.1.yaml

3. Deploy a PostgreSQL cluster:

kubectl apply -f psgl.yaml

4. Copy an optimized PostgreSQL cluster config file to the deployed cluster:

for i in ‘kubectl get pod | grep cluster | awk '{print $1}''; do kubectl exec -it $i --cp /var/lib/
postgresql/data/pgdata/postgresql.conf /var/lib/postgresql/data/pgdata/postgresqgl.conf.bak; kubectl
cp postgresqgl.conf ${i}:/var/lib/postgresqgl/data/pgdata/; done

5. Restart the PostgreSQL cluster nodes one at a time.
6. Create the HammerDB client:

kubectl apply -f hammer.yaml

Running the benchmark
You can find the TPROC-C scripts we used in the appendix.

1. Open a connection the HammerDB client pod:

kubectl exec -it hammerdb-cli-pod -- /bin/bash

2. Create a new TPROC-C database:

./hammerdbcli tcl auto.create-db.tcl

3. Run the TPROC-C benchmark

./hammerdbcli tcl auto.run-tprocc.tcl

4. Record the results.
5. Delete the TPROC-C database:

./hammerdbcli tcl auto drop-db.tcl

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 7

https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/release-1.27/releases/cnpg-1.27.1.yaml
https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/release-1.27/releases/cnpg-1.27.1.yaml

Appendix: Scripts we used

Kafka
kafka-vks.yaml

kind: Cluster
metadata:

apivVersion: cluster.x-k8s.io/vlbetal

name: modern-app-vks
namespace: modern-app

spec:
clusterNetwork:
services:
cidrBlocks: ["10.96.0.0/12"]
pods:
cidrBlocks: ["192.168.0.0/16"]
serviceDomain: "cluster.local"
topology:
class: builtin-generic-v3.4.0
version: v1.33.1---vmware.l-fips-vkr.2
controlPlane:
replicas: 1
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04
workers:

machineDeployments:
- class: node-pool
name: node-pool-1
replicas: 1
variables:
overrides:
- name: vmClass
value: kafka-48-512
- name: node
value:
labels:
topology.kubernetes.io/region: rackl
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04
- class: node-pool
name: node-pool-2
replicas: 1
variables:
overrides:
- name: vmClass
value: kafka-48-512
- name: node
value:
labels:
topology.kubernetes.io/region: rack2
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04
- class: node-pool
name: node-pool-3
replicas: 1
variables:
overrides:
- name: vmClass
value: kafka-48-512
- name: node
value:
labels:
topology.kubernetes.io/region: rack3
metadata:
annotations:

Accelerate your containerized workloads with VMware vSphere Kubernetes Service

January 2026 | 8

run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04
- class: node-pool
name: node-pool-4
replicas: 1
variables:
overrides:
- name: vmClass
value: vks-48-512
- name: node

value:
labels:
topology.kubernetes.io/region: rack4
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04

variables:
- name: vmClass
value: best-effort-medium
- name: storageClass
value: vsan-esa-default-policy-raidb
- name: vsphereOptions
value:
persistentVolumes:
defaultStorageClass: vsan-esa-default-policy-raid5
- name: kubernetes
value:
security:
podSecurityStandard:
enforce: privileged

kafka-cluster.yaml

apiVersion: kafka.strimzi.io/vlbeta?2
kind: KafkaNodePool
metadata:
name: dual-role
labels:
strimzi.io/cluster: my-cluster
spec:
replicas: 12
roles:
- controller
- broker
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 200Gi
deleteClaim: true
kraftMetadata: shared
- id: 1
type: persistent-claim
size: 200Gi
deleteClaim: true
kraftMetadata: shared
= i@ls 2
type: persistent-claim
size: 200Gi
deleteClaim: true
kraftMetadata: shared
- id: 3
type: persistent-claim
size: 200Gi
deleteClaim: true
kraftMetadata: shared
- id: 4
type: persistent-claim
size: 200Gi
deleteClaim: true

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 9

kraftMetadata: shared
- id: 5

type: persistent-claim

size: 200Gi

deleteClaim: true

kraftMetadata: shared

apiVersion: kafka.strimzi.io/vlbeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
rack:
topologyKey: topology.kubernetes.io/region
version: 4.1.0
metadataVersion: 4.1-IV1

listeners:

- name: plain
port: 9092
type: internal
tls: false

- name: tls
port: 9093

type: internal
tls: true
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
entityOperator:
topicOperator: {}
userOperator: {}

client-pod.yaml

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: ubuntu-opt-pvc
spec:
storageClassName: ""
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi
apiVersion: vl
kind: Pod
metadata:
name: ubuntu
labels:
app: ubuntu
spec:
volumes:
- name: ubuntu-opt-vol
persistentVolumeClaim:
claimName: ubuntu-opt-pvc
containers:
- name: ubuntu
image: ubuntu
volumeMounts:
- name: ubuntu-opt-vol
mountPath: "/opt"
resources:
limits:

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 10

memory: "32000Mi"
cpu: "24000m"
requests:
memory: "16000Mi"
cpu: "10000m"
command: ["/bin/sh","-c"]
args:
- apt-get update -y;
apt-get install kafkacat wget iputils-ping default-jdk -y;
cd /opt;
wget https://dlcdn.apache.org/kafka/3.9.1/kafka 2.13-3.9.1.tgz;
tar -xzvf kafka 2.13-3.9.1.tgz;
cd kafka 2.13-3.9.1/bin;
sleep infinity;

hostNetwork: false
dnsPolicy: ClusterFirstWithHostNet

HammerDB

postgresql-vks.yaml

apivVersion: cluster.x-k8s.io/vlbetal
kind: Cluster
metadata:
name: postgres-cluster-vks
namespace: pt
spec:
clusterNetwork:
services:
cidrBlocks: ["10.96.0.0/12"]
pods:
cidrBlocks: ["192.168.0.0/16"]
serviceDomain: "cluster.local"
topology:
class: builtin-generic-v3.4.0
version: v1.33.1---vmware.l-fips-vkr.2
controlPlane:
replicas: 1
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04
workers:
machineDeployments:
- class: node-pool
name: node-pool-1
replicas: 4
variables:
overrides:
- name: vmClass
value: vks-48-512
- name: node
value:
labels:
topology.kubernetes.io/region: rackl
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu,os-version=24.04
variables:
- name: vmClass
value: best-effort-medium
- name: storageClass
value: vsan-esa-default-policy-raid5b
- name: vsphereOptions
value:
persistentVolumes:
defaultStorageClass: vsan-esa-default-policy-raid5
- name: kubernetes
value:
security:
podSecurityStandard:
enforce: privileged

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 11

psql.yaml

apivVersion: postgresgl.cnpg.io/vl
kind: Cluster
metadata:
name: cnpg-postgres-cluster
namespace: cnpg-system
spec:
instances: 4

—--- BOOTSTRAP WITH A SUPERUSER PASSWORD ---
bootstrap:
initdb:
this initializes the cluster and uses the superuser secret below
database: postgres

superuserSecret:
name: cnpg-postgres-superuser

--- MAIN DATA VOLUME (PGDATA) ---
storage:
size: 400Gi

--- WAL STORAGE ---
walStorage:
size: 400Gi

hammerdb.yaml

apivVersion: vl
kind: Pod
metadata:
name: hammerdb-cli-pod
labels:
app: hammerdb
spec:
containers:
- name: hammerdb-cli
Use the official HammerDB Docker image
image: tpcorg/hammerdb:latest
Command and arguments to run your specific benchmark script
command: ["/bin/bash","-c"]
args:
- sleep infinity;

postgresql.conf

=
g
o
7}
&
Q
=
)
%)
L@}
=
Q
o
5
h
e
Q
c
=
©
&
i
e}
5
h
i
=
10}

This file consists of lines of the form:
name = value

(The "=" is optional.) Whitespace may be used. Comments are introduced with
"#" anywhere on a line. The complete list of parameter names and allowed
values can be found in the PostgreSQL documentation.

The commented-out settings shown in this file represent the default values.
Re-commenting a setting is NOT sufficient to revert it to the default value;
you need to reload the server.

This file is read on server startup and when the server receives a SIGHUP
signal. If you edit the file on a running system, you have to SIGHUP the
server for the changes to take effect, run "pg ctl reload", or execute
"SELECT pg_reload _conf()". Some parameters, which are marked below,

S oS e S o SR e SE o S R SE o o 9 3 o

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 12

require a server shutdown and restart to take effect.

#

Any parameter can also be given as a command-line option to the server,

"postgres -c log connections=all". Some parameters can be changed at run time
with the "SET" SQL command.

#

Memory units: B = bytes Time units: us = microseconds

kB = kilobytes ms = milliseconds

MB = megabytes s = seconds

GB = gigabytes min = minutes

TB = terabytes h = hours

d = days

__

The default values of these variables are driven from the -D command-line
option or PGDATA environment variable, represented here as ConfigDir.

#data_directory = 'ConfigDir'

use data in another directory

(change requires restart)

#hba file = 'ConfigDir/pg hba.conf'

host-based authentication file

(change requires restart)

#ident file = 'ConfigDir/pg ident.conf'

ident configuration file

(change requires restart)

If external pid file is not explicitly set, no extra PID file is written.

#external pid file = "'

write an extra PID file

(change requires restart)

- Connection Settings -

#listen_addresses = 'localhost'
comma-separated list

what IP address(es) to listen on;

of addresses;

defaults to 'localhost'; use '*' for all
(change requires restart)

#port = 5432

max_connections = 1000 # (change requires restart)

#reserved connections = 0 # (change requires restart)

#superuser_ reserved_connections = 3 # (change requires restart)

#unix socket directories = '/var/run/postgresqgl' # comma-separated list of directories

(change requires restart)

(change requires restart)

#unix_socket_group = "'
#unix socket permissions = 0777

(change requires restart)

begin with 0 to use octal notation

(change requires restart)

#bonjour = off

#
#bonjour name =
#

- TCP settings -
see "man tcp" for details

#tcp_keepalives idle = 0

0 selects the system
#tcp_keepalives_interval = 0

0 selects the system
#tcp_keepalives count = 0

0 selects the system
#tcp_user timeout = 0

0 selects the system

#client_connection_check_interval =

advertise server via Bonjour

(change requires restart)

defaults to the computer name

(change requires restart)

TCP_KEEPIDLE, in seconds;

default

TCP_KEEPINTVL, in seconds;

default

TCP_KEEPCNT;

default

TCP_USER_TIMEOUT, in milliseconds;
default

0 # time between checks for client

disconnection while running queries;

0 for never

e.g.,

Accelerate your containerized workloads with VMware vSphere Kubernetes Service

January 2026 | 13

- Authentication -

#authentication_timeout = 1lmin # 1s-600s

#password_encryption = scram-sha-256 # scram-sha-256 or md5

#scram_iterations = 4096

#md5_password warnings = on

#oauth_validator_ libraries = "' # comma-separated list of trusted validator modules

GSSAPI using Kerberos

#krb_server keyfile = 'FILE:S${sysconfdir}/krb5.keytab'
#krb_caseins_users = off

#gss_accept_delegation = off

- SSL -

#ss1 = off

#ssl_ca_file = "'
#ssl_cert file = 'server.crt'
#ssl_crl _file = "'
#ssl_crl_dir = "'

#ssl_key file = 'server.key'

#ssl_ciphers = 'HIGH:MEDIUM:+3DES:!aNULL' # allowed TLSv1.2 ciphers
#ssl_tlsl3_ciphers = "' # allowed TLSvl.3 cipher suites, blank for default
#ssl_prefer server ciphers = on

#ssl groups = 'X25519:prime256vl’'

#ssl_min_protocol version = 'TLSvl.2'

#ssl_max_protocol version = ''

#ss1_dh params file = '’/
#ssl_passphrase_command = ‘/
#ssl_passphrase_command_supports reload = off

__
RESOURCE USAGE (except WAL)
__
- Memory -
shared buffers = 204800MB # min 128kB
(change requires restart)
#huge pages = try # on, off, or try
(change requires restart)
#huge page size = 0 # zero for system default
(change requires restart)
temp buffers = 4096MB # min 800kB
#max_prepared_transactions = 0 # zero disables the feature

(change requires restart)
Caution: it is not advisable to set max prepared transactions nonzero unless
you actively intend to use prepared transactions.

work _mem = 4096MB # min 64kB
#hash _mem multiplier = 2.0 # 1-1000.0 multiplier on hash table work mem
maintenance work mem = 1024MB # min 64kB
#autovacuum_work mem = -1 # min 64kB, or -1 to use maintenance_work_mem
#logical_decoding work mem = 64MB # min 64kB
max_stack depth = 7MB # min 100kB
#shared memory type = mmap # the default is the first option
supported by the operating system:
mmap
sysv
windows

(change requires restart)

dynamic_shared memory type = posix # the default is usually the first option
supported by the operating system:

posix

sysv

windows

mmap

(change requires restart)

#min dynamic shared memory = OMB # (change requires restart)

#vacuum buffer usage limit = 2MB # size of vacuum and analyze buffer access strategy ring;
0 to disable vacuum buffer access strategy;

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 14

range 128kB to 16GB

SLRU buffers (change requires restart)

#commit_ timestamp buffers = 0 # memory for pg _commit_ts (0 = auto)
#multixact offset buffers = 16 # memory for pg multixact/offsets
#multixact _member buffers 32 # memory for pg multixact/members
#notify buffers = 16 # memory for pg notify

#serializable buffers = 32 # memory for pg serial
#subtransaction_buffers = 0 # memory for pg subtrans (0 = auto)
#transaction buffers = 0 # memory for pg xact (0 = auto)

- Disk -

#temp file limit = -1 # limits per-process temp file space

in kilobytes, or -1 for no limit
#file_copy_method = copy # copy, clone (if supported by 0S)

#max_notify queue pages = 1048576 # limits the number of SLRU pages allocated
for NOTIFY / LISTEN queue

- Kernel Resources -

max files per process = 4000 # min 64
(change requires restart)

- Background Writer -

#bgwriter delay = 200ms # 10-10000ms between rounds
#bgwriter lru maxpages = 100 # max buffers written/round, 0 disables
#bgwriter lru multiplier = 2.0 # 0-10.0 multiplier on buffers scanned/round
#bgwriter flush after = 512kB # measured in pages, 0 disables

- I/0 -

#backend_flush_after = 0 # measured in pages, 0 disables
effective io_concurrency = 32 # 1-1000; O disables issuing multiple simultaneous IO requests
#maintenance io concurrency = 16 # 1-1000; same as effective_io_concurrency
#io_max_combine_limit = 128%B # usually 1-128 blocks (depends on 0S)
(change requires restart)
#io_combine_ limit = 128kB # usually 1-128 blocks (depends on 0S)
#io_method = worker # worker, io_uring, sync
(change requires restart)
#io_max_concurrency = -1 # Max number of IOs that one process

can execute simultaneously

-1 sets based on shared_buffers

(change requires restart)
#io_workers = 3 # 1-32;

- Worker Processes -

#max_worker processes = 8 # (change requires restart)
#max_parallel workers_per _gather = 2 # limited by max_parallel workers
#max_parallel maintenance_workers = 2 # limited by max_parallel workers
#max_parallel workers = 8 # number of max worker processes that

can be used in parallel operations
#parallel leader participation = on
__
WRITE-AHEAD LOG
__

- Settings -

#wal level = replica # minimal, replica, or logical
(change requires restart)
#fsync = on # flush data to disk for crash safety

(turning this off can cause
unrecoverable data corruption)
#synchronous commit = on # synchronization level;

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 15

off, local, remote write, remote_apply, or on

#wal sync method = fsync # the default is the first option
supported by the operating system:
open_datasync
fdatasync (default on Linux and FreeBSD)
fsync
fsync_writethrough
open_sync
#full page writes = on # recover from partial page writes
#wal log hints = off # also do full page writes of non-critical updates
(change requires restart)
#wal compression = off # enables compression of full-page writes;
off, pglz, 1z4, zstd, or on
#wal_init_zero = on # zero-fill new WAL files
#wal_recycle = on # recycle WAL files
#wal_buffers = -1 # min 32kB, -1 sets based on shared buffers
(change requires restart)
#wal_writer delay = 200ms # 1-10000 milliseconds
#wal_writer flush_after = 1MB # measured in pages, 0 disables

#wal skip_threshold = 2MB

#commit delay = 0 # range 0-100000, in microseconds
#commit siblings = 5 # range 1-1000

- Checkpoints -

#checkpoint_timeout = 5min # range 30s-1d

#checkpoint completion target = 0.9 # checkpoint target duration, 0.0 - 1.0
#checkpoint_flush_after = 256kB # measured in pages, 0 disables
#checkpoint warning = 30s # 0 disables

max wal_size = 5GB

min wal size = 80MB

- Prefetching during recovery -

#recovery prefetch = try # prefetch pages referenced in the WAL?

#wal decode_buffer size = 512kB # lookahead window used for prefetching

(change requires restart)

- Archiving -

#archive mode = off # enables archiving; off, on, or always
(change requires restart)
#archive library = "' # library to use to archive a WAL file
(empty string indicates archive command should
be used)
#archive command = '' # command to use to archive a WAL file
placeholders: %p = path of file to archive
%$f = file name only
e.g. 'test ! -f /mnt/server/archivedir/%f && cp %p /mnt/server/archivedir/$f'
#archive_timeout = 0 # force a WAL file switch after this

number of seconds; 0 disables
- Archive Recovery -

These are only used in recovery mode.

#restore_command = '' # command to use to restore an archived WAL file
placeholders: %p = path of file to restore
$f = file name only
e.g. 'cp /mnt/server/archivedir/%f %p'
#archive cleanup command = ''# command to execute at every restartpoint
#recovery_end command = "' # command to execute at completion of recovery

- Recovery Target -

Set these only when performing a targeted recovery.
#recovery target = '' # 'immediate' to end recovery as soon as a
consistent state is reached
(change requires restart)
#recovery target name = '' # the named restore point to which recovery will proceed

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 16

(change requires restart)

#recovery target time = '' # the time stamp up to which recovery will proceed
(change requires restart)

#recovery target xid = "' # the transaction ID up to which recovery will proceed
(change requires restart)

#recovery target lsn = "' # the WAL LSN up to which recovery will proceed
(change requires restart)

#recovery target inclusive = on # Specifies whether to stop:

just after the specified recovery target (on)
just before the recovery target (off)
(change requires restart)

#recovery target timeline = 'latest' # 'current', 'latest', or timeline ID
(change requires restart)
#recovery target action = 'pause' # 'pause', 'promote', 'shutdown'

(change requires restart)

- WAL Summarization -

#summarize wal = off # run WAL summarizer process?

#wal_ summary keep_ time = '10d' # when to remove old summary files, 0 = never
__

REPLICATION

__

- Sending Servers -
Set these on the primary and on any standby that will send replication data.

#max_wal_senders = 10 # max number of walsender processes
(change requires restart)
#max_replication_slots = 10 # max number of replication slots
(change requires restart)
#twal_keep_size = 0 # in megabytes; 0 disables
#max_slot_wal_keep size = -1 # in megabytes; -1 disables
#idle_replication_slot_timeout = 0 # in seconds; 0 disables
#wal sender timeout = 60s # in milliseconds; 0 disables
#track_commit timestamp = off# collect timestamp of transaction commit
(change requires restart)

- Primary Server -
These settings are ignored on a standby server.
#synchronous standby names = '' # standby servers that provide sync rep
method to choose sync standbys, number of sync standbys,
and comma-separated list of application name
from standby(s); '*' = all
#synchronized standby slots = "' # streaming replication standby server slot
names that logical walsender processes will wait for

- Standby Servers -

These settings are ignored on a primary server.

#primary conninfo = "' # connection string to sending server
#primary slot name = "' # replication slot on sending server
#hot_standby = on # "off" disallows queries during recovery

(change requires restart)
#max_standby archive delay = 30s # max delay before canceling queries

when reading WAL from archive;
-1 allows indefinite delay
#max standby streaming delay = 30s # max delay before canceling queries
when reading streaming WAL;
-1 allows indefinite delay
#wal_receiver_create_temp_slot = off # create temp slot if primary_slot_name
is not set

#wal_ receiver_status_interval = 10s # send replies at least this often
0 disables
#hot_standby feedback = off # send info from standby to prevent

query conflicts

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 17

#wal receiver timeout = 60s # time that receiver waits for
communication from primary
in milliseconds; 0 disables

#wal retrieve_retry interval = 5s # time to wait before retrying to

retrieve WAL after a failed attempt
#recovery min apply delay = 0 # minimum delay for applying changes during recovery
#sync_replication_slots = off # enables slot synchronization on the physical standby

from the primary
- Subscribers -
These settings are ignored on a publisher.

#max active replication origins = 10 # max number of active replication origins
(change requires restart)
#max_logical_replication_workers = 4 # taken from max worker processes
(change requires restart)
#max_sync_workers per_ subscription = 2 # taken from max_logical_ replication_workers
#max_parallel apply workers per subscription = 2 # taken from max logical replication_workers

- Planner Method Configuration -

#enable async append = on
#enable bitmapscan = on
#enable gathermerge = on
#enable hashagg = on
#enable_hashjoin = on
#enable_incremental sort = on
#enable_indexscan = on
#enable indexonlyscan = on
#enable material = on
#enable memoize = on

#enable mergejoin = on
#enable nestloop = on
#enable parallel append = on
#enable parallel hash = on

#enable partition pruning = on
#enable _partitionwise_join = off
#enable partitionwise aggregate = off
#enable presorted_aggregate = on
#enable_seqgscan = on

#enable sort = on

#enable tidscan = on
#enable group by reordering = on
#enable_distinct_reordering = on

#enable _self join_elimination = on

- Planner Cost Constants -

#seq _page_cost = 1.0 # measured on an arbitrary scale
#random_page_cost = 4.0 # same scale as above
#cpu_tuple cost = 0.01 # same scale as above
#cpu_index_ tuple cost = 0.005 # same scale as above
#cpu_operator_cost = 0.0025 # same scale as above

#parallel setup_cost = 1000.0 # same scale as above

#parallel tuple cost = 0.1 # same scale as above
#min_parallel table scan_size = 8MB

#min_parallel_ index_scan_size = 512kB

effective cache size = 128GB

#3jit above cost = 100000 # perform JIT compilation if available

and query more expensive than this;
-1 disables

#jit_inline_above cost = 500000 # inline small functions if query is
more expensive than this; -1 disables
#jit_optimize above cost = 500000 # use expensive JIT optimizations if

query i1s more expensive than this;

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 18

-1 disables
- Genetic Query Optimizer -

#geqo = on
#gego_threshold = 12
#geqo_effort = 5
#geqo_pool size = 0
#geqo_generations = 0
#geqo_selection_bias = 2.0
#geqo_seed = 0.0

range 1-10

selects default based on effort
selects default based on effort
range 1.5-2.0

range 0.0-1.0

= H H e

- Other Planner Options -

#default_statistics_target = 100 # range 1-10000
#constraint exclusion = partition # on, off, or partition
#cursor_tuple fraction = 0.1 # range 0.0-1.0
#from collapse_limit = 8
#jit = on # allow JIT compilation
#join collapse limit = 8 # 1 disables collapsing of explicit
JOIN clauses
#plan_cache_mode = auto # auto, force generic plan or

force_custom plan
#recursive_worktable factor = 10.0 # range 0.001-1000000

- Where to Log -

#log_destination = 'stderr' # Valid values are combinations of
stderr, csvlog, Jjsonlog, syslog, and
eventlog, depending on platform.
csvlog and jsonlog require
logging_collector to be on.

This i1s used when logging to stderr:

#logging collector = off # Enable capturing of stderr, jsonlog,
and csvlog into log files. Required
to be on for csvlogs and jsonlogs.
(change requires restart)

These are only used if logging collector is on:

#log directory = 'log' # directory where log files are written,
can be absolute or relative to PGDATA
#log filename = 'postgresgl-%Y-%$m-%d $%H%M%S.log' # log file name pattern,
can include strftime () escapes
#log_file_ mode = 0600 # creation mode for log files,
begin with 0 to use octal notation
#log rotation age = 1d # Automatic rotation of logfiles will
happen after that time. 0 disables.
#log_rotation_size = 10MB # Automatic rotation of logfiles will

happen after that much log output.
0 disables.
#log_truncate on_rotation = off # If on, an existing log file with the

same name as the new log file will be
truncated rather than appended to.
But such truncation only occurs on
time-driven rotation, not on restarts
or size-driven rotation. Default is
off, meaning append to existing files
in all cases.

These are relevant when logging to syslog:

#syslog facility = 'LOCALO'

#syslog ident = 'postgres'

#syslog_sequence numbers = on

#syslog split messages = on

This is only relevant when logging to eventlog (Windows) :

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 19

(change requires restart)
#event source = ‘PostgreSQL’

- When to Log -

#log min messages = warning # values in order of decreasing detail:
debug5
debug4
debug3
debug2
debugl
info
notice
warning
error
log
fatal
panic

S HE W o HE FE e 4 FE HE S

#log_min_error_statement = error # values in order of decreasing detail:
debug5

debug4

debug3

debug2

debugl

info

notice

warning

error

log

fatal

panic (effectively off)

S HE W o HE FE HE e 4 FE HE S

#log_min duration_statement = -1 # -1 is disabled, 0 logs all statements
and their durations, > 0 logs only
statements running at least this number
of milliseconds

#log_min_duration_sample = -1 # -1 is disabled, 0 logs a sample of statements
and their durations, > 0 logs only a sample of
statements running at least this number
of milliseconds;
sample fraction is determined by log statement sample rate

#log_statement sample rate = 1.0 # fraction of logged statements exceeding
log min duration sample to be logged;
1.0 logs all such statements, 0.0 never logs

#log_transaction_sample_rate = 0.0 # fraction of transactions whose statements
are logged regardless of their duration; 1.0 logs all
statements from all transactions, 0.0 never logs

#log startup progress interval = 10s # Time between progress updates for
long-running startup operations.
0 disables the feature, > 0 indicates
the interval in milliseconds.

- What to Log -

#debug_print parse = off
#debug_print_ rewritten = off
#debug_print_plan = off
#debug pretty print = on
#log_autovacuum min_duration = 10min # log autovacuum activity;
-1 disables, 0 logs all actions and
their durations, > 0 logs only
actions running at least this number
of milliseconds.
#log_checkpoints = on
#log_connections = '' # log aspects of connection setup
options include receipt, authentication, authorization,

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 20

setup_durations, and all to log all of these aspects
#log_disconnections = off
#log _duration = off # log statement duration

#log error verbosity = default # terse, default, or verbose messages

#log_hostname = off
#log line prefix = 'Sm [%p] ' # special values:

%a = application name

%u = user name

%d = database name

%r = remote host and port

%h = remote host

$L = local address

%b = backend type

$p = process ID

%P = process ID of parallel group leader

%t = timestamp without milliseconds

$m = timestamp with milliseconds

%n = timestamp with milliseconds (as a Unix epoch)

%Q = query ID (0 if none or not computed)

%1 = command tag

%e = SQL state

$c = session ID

%1 = session line number

%s = session start timestamp

%v = virtual transaction ID

%$x = transaction ID (0 if none)

%q = stop here in non-session

processes

5% = '%"

e.g. '<%u%%%d> '
#log_lock waits = off # log lock waits >= deadlock_timeout
#log_lock_failures = off # log lock failures
#log_recovery_conflict_waits = off # log standby recovery conflict waits

>= deadlock timeout

#log _parameter max_ length = -1 # when logging statements, limit logged

bind-parameter values to N bytes;
-1 means print in full, 0 disables

#log parameter max length on error = 0 # when logging an error, limit logged

bind-parameter values to N bytes;
-1 means print in full, 0 disables

#log _statement = 'none' # none, ddl, mod, all
#log_replication_commands = off
#log temp files = -1 # log temporary files equal or larger

than the specified size in kilobytes;
-1 disables, 0 logs all temp files

log timezone = ‘Etc/UTC’
- Process Title -
#cluster name = '' # added to process titles if nonempty
(change requires restart)
#update_process_title = on
__
STATISTICS
__

- Cumulative Query and Index Statistics -

#track_activities = on

#track activity query size = 1024 # (change requires restart)
#track counts = on

#track_cost_delay timing = off

#track_io_timing = off

#track_wal _io_timing = off
#track functions = none # none, pl, all
#stats fetch consistency = cache # cache, none, snapshot

- Monitoring -

Accelerate your containerized workloads with VMware vSphere Kubernetes Service

January 2026 | 21

#compute query id = auto
#log_statement_ stats = off
#log _parser_stats = off
#log_planner_ stats = off
#log_executor_stats = off

__
VACUUMING
__
- Automatic Vacuuming -
#autovacuum = on # Enable autovacuum subprocess? 'on'

requires track_counts to also be on.
autovacuum_worker slots = 16 # autovacuum worker slots to allocate

(change requires restart)
#autovacuum max_ workers = 3 # max number of autovacuum subprocesses
#autovacuum naptime = Imin # time between autovacuum runs
#autovacuum_vacuum_threshold = 50 # min number of row updates before

vacuum
#autovacuum_vacuum_insert threshold = 1000 # min number of row inserts

before vacuum; -1 disables insert
vacuums
#autovacuum_analyze_ threshold = 50 # min number of row updates before
analyze

#autovacuum_vacuum_scale_ factor = 0.2 # fraction of table size before vacuum
#autovacuum_vacuum_insert scale factor = 0.2 # fraction of unfrozen pages
before insert vacuum
#autovacuum_analyze_ scale_ factor = 0.1 # fraction of table size before analyze
#autovacuum_ vacuum max_threshold = 100000000 # max number of row updates
before vacuum; -1 disables max
threshold
#autovacuum_ freeze max_age = 200000000 # maximum XID age before forced vacuum
(change requires restart)
#autovacuum multixact_ freeze max_age = 400000000 # maximum multixact age

before forced vacuum
(change requires restart)
#autovacuum vacuum cost_delay = 2ms # default vacuum cost delay for
autovacuum, in milliseconds;
-1 means use vacuum_cost_delay
#autovacuum_ vacuum_cost_ limit = -1 # default vacuum cost limit for
autovacuum, -1 means use
vacuum_cost_limit

- Cost-Based Vacuum Delay -

#vacuum cost delay = 0 # 0-100 milliseconds (0 disables)
#vacuum_cost_page_hit =1 # 0-10000 credits
#vacuum_cost_page miss = 2 # 0-10000 credits
#vacuum_cost_page_dirty = 20 # 0-10000 credits
#vacuum_cost_limit = 200 # 1-10000 credits

- Default Behavior -

#vacuum_truncate = on # enable truncation after vacuum
- Freezing -

#vacuum_freeze_ table_age = 150000000

#vacuum_freeze min_age = 50000000

#vacuum_failsafe age = 1600000000

#vacuum multixact freeze table age = 150000000
#vacuum_multixact freeze min_age = 5000000

#vacuum multixact failsafe _age = 1600000000
#vacuum_max_eager_ freeze failure rate = 0.03 # 0 disables eager scanning

- Statement Behavior -

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 22

#client_min messages = notice # values in order of decreasing detail:
debugb
debug4
debug3
debug2
debugl
log
notice
warning
error
#search path = '"Suser", public' # schema names
#row_security = on
#default_table_access_method = 'heap'
#default_tablespace = '' # a tablespace name, '' uses the default
#default toast compression = 'pglz' # 'pglz' or 'lz4'
#temp_tablespaces = "' # a list of tablespace names, '' uses

only default tablespace
#check_ function bodies = on

#default_transaction_isolation = 'read committed'

#default_transaction_read only = off

#default_transaction_deferrable = off

#session_replication_role = 'origin'

#statement timeout = 0 # in milliseconds, 0 is disabled

#transaction_timeout = 0 # in milliseconds, 0 is disabled
#lock timeout = 0 # in milliseconds, 0 is disabled
#idle_in_transaction_session_timeout = 0 # in milliseconds, 0 is disabled
#idle_session_timeout = 0 # in milliseconds, 0 is disabled
#bytea_output = 'hex' # hex, escape
#xmlbinary = 'base64'
#xmloption = 'content'
#gin_pending list_limit = 4MB
#createrole_self grant = '' # set and/or inherit
#event triggers = on
- Locale and Formatting -
datestyle = 'iso, mdy'
#intervalstyle = 'postgres'
timezone = 'Etc/UTC'
#timezone_abbreviations = 'Default' # Select the set of available time zone
abbreviations. Currently, there are
Default
Australia (historical usage)
India
You can create your own file in
share/timezonesets/.
#extra float digits =1 # min -15, max 3; any value >0 actually
selects precise output mode
#client encoding = sql ascii # actually, defaults to database

encoding

These settings are initialized by initdb, but they can be changed.

lc messages = C # locale for system error message
strings

lc monetary = C # locale for monetary formatting

lc_numeric = C # locale for number formatting

lc time = C # locale for time formatting

#icu_validation_level = warning # report ICU locale validation

errors at the given level

default configuration for text search
default text search config = 'pg catalog.english'

- Shared Library Preloading -

#local_preload libraries = "'

#session_preload libraries = ''

#shared preload libraries = "' # (change requires restart)
#jit_provider = 'llvmjit' # JIT library to use

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 23

- Other Defaults -

#dynamic_library path = '$libdir'
#extension control path = '$system'
#gin_fuzzy search limit =

|
o

#deadlock_timeout = 1s
#max_locks per transaction = 64 # min 10
(change requires restart)
#max_pred_locks_per_ transaction = 64 # min 10
(change requires restart)

#max_pred locks_per_relation = -2 # negative values mean

(max_pred locks_per_ transaction

/ -max_pred locks per relation) - 1
#max_pred_locks_per page = 2 # min 0
__
VERSION AND PLATFORM COMPATIBILITY
__
- Previous PostgreSQL Versions -

#array_nulls = on

#backslash_quote = safe_encoding # on, off, or safe_encoding
#escape_string warning = on

#lo compat privileges = off

#quote_all identifiers = off

#standard_conforming_ strings = on

#synchronize segscans = on

- Other Platforms and Clients -

#transform null equals = off
#allow_alter_system = on

#exit _on_error = off # terminate session on any error?
#restart_after crash = on # reinitialize after backend crash?
#data_sync_retry = off # retry or panic on failure to fsync
data?
(change requires restart)
#recovery init sync method = fsync # fsync, syncfs (Linux 5.8+)

These options allow settings to be loaded from files other than the
default postgresgl.conf. Note that these are directives, not variable
assignments, so they can usefully be given more than once.

#include_dir = '...' # include files ending in '.conf' from
a directory, e.g., 'conf.d'
#include_if exists = '...' # include file only if it exists
#include = '..."' # include file
__
CUSTOMIZED OPTIONS
__

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 24

Add settings for extensions here

load CloudNativePG custom.conf configuration
include 'custom.conf'

load CloudNativePG override.conf configuration
include 'override.conf'

create-db.tcl

dbset db pg

dbset bm TPC-C

diset connection pg_host cnpg-postgres-cluster-rw
diset connection pg port 5432

diset connection pg_sslmode prefer

diset tpcc pg_count ware 480

diset tpcc pg num vu 48

diset tpcc pg_superuser postgres
diset tpcc pg defaultdbase postgres
diset tpcc pg_user tpcc

diset tpcc pg pass tpcc

diset tpcc pg_dbase tpcc

diset tpcc pg tspace pg default
diset tpcc pg partition true

buildschema

run-tprocc.tcl

set tmpdir $::env (TMP)

dbset db pg

dbset bm TPC-C

diset connection pg host cnpg-postgres-cluster-rw
diset connection pg_port 5432

diset connection pg sslmode prefer

diset tpcc pg superuser postgres
diset tpcc pg_superuserpass postgres
diset tpcc pg defaultdbase postgres
diset tpcc pg_user tpcc

diset tpcc pg pass tpcc

diset tpcc pg_dbase tpcc

diset tpcc pg driver timed

diset tpcc pg total iterations 10000000
diset tpcc pg rampup 5

diset tpcc pg_duration 15

diset tpcc pg allwarehouse true
diset tpcc pg timeprofile true

diset tpcc pg vacuum true

loadscript

puts "TEST STARTED"
vuset vu 96

vuset logtotemp 1
vucreate

tcstart

tcstatus

set jobid [vurun]
vudestroy

tcstop

print "TEST COMPLETE"
set of [open $tmpdir/postgres_tprocc w]
puts S$of $jobid

close $of

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 25

drop-db.tcl

dbset db pg

dbset bm TPC-C

diset connection pg_host cnpg-postgres-cluster-rw
diset connection pg port 5432

diset connection pg_sslmode prefer

diset tpcc pg_superuser postgres
diset tpcc pg defaultdbase postgres
diset tpcc pg_user tpcc

diset tpcc pg pass tpcc

diset tpcc pg_dbase tpcc

diset tpcc pg tspace pg default

deleteschema

Read the report »

This project was commissioned by Broadcom.

‘ Principled

Technologies®

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:

Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or resullt.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer's sole and exclusive remedies are as set forth herein.

Accelerate your containerized workloads with VMware vSphere Kubernetes Service January 2026 | 26

https://www.principledtechnologies.com
https://facts.pt/tnxPFRo

