
The science behind the report:

Deliver better performance for
transactional database workloads
at a lower cost by choosing an
Amazon EC2 R5b instance

This document describes what we tested, how we tested, and what we found. To learn how these facts translate
into real-world benefits, read the report Deliver better performance for transactional database workloads at a
lower cost by choosing an Amazon EC2 R5b instance.

We concluded our hands-on testing on January 28, 2021. During testing, we determined the appropriate
hardware and software configurations and applied updates as they became available. The results in this report
reflect configurations that we finalized on December 18, 2020 or earlier. Unavoidably, these configurations may
not represent the latest versions available when this report appears.

Our results
To learn more about how we have calculated the wins in this report, go to http://facts.pt/calculating-and-highlighting-wins.
Unless we state otherwise, we have followed the rules and principles we outline in that document.

Table 1: New orders per minute (NOPM) results from our testing of the two instances with a TPC-C-like workload
from HammerDB.

Amazon Elastic Cloud Computing
(EC2) r5b.8xlarge

Azure E64_32s_v4

NOPM 1,468,743 720,157

As Table 2 shows instance and VM costs, Table 3 shows storage costs. We used the cost calculators provided by each vendor to estimate the
cost for each solution using an on-demand model. To ensure instance costs included Microsoft Windows Server and Microsoft SQL Server
2019 Enterprise edition licensing, in the AWS pricing calculator, we selected “Windows Server with SQL Server Enterprise.” In the Azure
pricing calculator, we chose “SQL Server” for the Type dropdown and “SQL Enterprise” for the License dropdown. In the Azure calculator,
we chose the pricing for the E64s v4 instance since this was the underlying VM the pricing is based on according to Azure: “The licensing
charged for SQL Server will be constrained to the active vCPU(s) count while the compute cost, which includes OS licensing, remains the
same one as the original size based on “underlying vCPU(s).”1 To calculate SQL Server licensing cost on the constrained-CPU Azure instance
with 32 vCPUs instead of 64, we took the listed 64 vCPU SQL Server licensing cost estimate ($17,520) and halved it ($8,670) since Azure
charges SQL server licensing only on active vCPUs.

1 Microsoft, “Windows Virtual Machines Pricing,” accessed March 3, 2021, https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/windows/

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised)

A Principled Technologies report: Hands-on testing. Real-world results.

http://facts.pt/5ro20rg
http://www.principledtechnologies.com
http://facts.pt/5ro20rg
http://facts.pt/5ro20rg
http://facts.pt/calculating-and-highlighting-wins
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/

We found that costs for the Elastic Block Storage (EBS) General Purpose SSD (gp2) volumes for the EC2 instance were lower than the storage
costs for the Azure VM. To match the reported input/output (I/O) performance of the drives for the two instances, we selected a larger
storage capacity for the Azure VM than we did for the EC2 instance.2,3 For a 730-hour (24/7 usage) month, storage for the EC2 instance cost
43 percent less than the Azure VM. The Azure managed disks offered 53 percent more storage than the EBS storage, but the EC2 instance
with EBS storage cost 24 percent less than the Azure VM with managed disks we tested. If we reduce the cost of the Azure storage by the
difference in storage, something customers cannot do, EBS still costs 13 percent less per storage GB than the Azure managed disks.

With combined instance and storage costs for a 730-hour month,4 the EC2 instance cost 24 percent less than the Azure VM, saving more
than $4,700 for a single month of 24/7 usage.5,6

Table 2: Pricing information and comparison for the two instances we tested.

Amazon
EC2 r5b.8xlarge

Azure E64_32s_v4
Percentage lower cost
for the EC2 instance

Cost
difference in dollars

730-hr usage scenario

Instance hourly cost $15.86 $18.98 16.4% $3.12

Instance 730hr cost $11,574.88 $13,852.48 16.4% $2,277.60

Storage
monthly cost 730hr $3,210.40 $5,676.48 43.4% $2,466.08

Total (730hr) $14,785.28 $19,528.96 24.3% $4,743.68

240-hr usage scenario

Instance hourly cost $15.86 $18.98 16.4% $3.12

Instance 240hr cost $3,805.44 $4,554.24 16.4% $748.80

Storage
monthly cost 240hr $1,054.09 $1,866.24 43.5% $812.15

Total (240hr) $4,859.53 $6,420.48 24.3% $1,560.95

Table 3: Pricing information and comparison for the storage of the two instances we tested.

Amazon EC2 r5b.8xlarge Azure E64_32s_v4

Azure E64_32s_v4 monthly
storage cost (730hr) $3,210.40 $5,676.48

Total GB storage 32,004 49,152

Per GB cost $0.10 $0.12

Storage difference in GB (Azure) 17,148

Calculated cost for additional storage (Azure) $1,980.39

Adjusted cost assuming equal storage in GB (Azure) $3,696.09

Adjusted percentage lower cost for the EC2 instance 13.1%

2 Amazon, “Amazon EBS pricing,” accessed February 2, 2021, https://aws.amazon.com/ebs/pricing/.
3 Microsoft, “Managed Disks pricing,” accessed February 2, 2021, https://azure.microsoft.com/en-us/pricing/details/managed-disks/.
4 Instance pricing from both CSPs did not include operating system or SQL Server costs. To include those, we used each CSP’s pricing calculator.
5 Amazon, “AWS Pricing Calculator,” accessed February 2, 2021, https://calculator.aws/#/.
6 Microsoft, “Pricing calculator,” accessed February 2, 2021, https://azure.microsoft.com/en-us/pricing/calculator/.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 2

https://aws.amazon.com/ebs/pricing/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://calculator.aws/#/
https://azure.microsoft.com/en-us/pricing/calculator/

System configuration information
Table 4: Detailed information on the system we tested.

System configuration information 32vCPU AWS EC2 r5b.8xlarge instance 64vCPU Azure E64_32s_v4 VM

Tested by Principled Technologies Principled Technologies

Test date 12/23/2020 12/23/2020

Cloud service provider (CSP) / Region AWS us-east-1b Microsoft Azure East US (Zone 1)

Workload & version HammerDB v3.3 TPC-C-like HammerDB v3.3 TPC-C-like

WL specific parameters
MAXDOP 1, Lock Pages in Memory, Perform
Volume Maintenance Tasks, 90% Reserved
SQL Memory

MAXDOP 1, Lock Pages in Memory, Perform
Volume Maintenance Tasks, 90% Reserved
SQL Memory

Iterations and result choice 3 runs, median 3 runs, median

Server platform r5b.8xlarge E64_32s_v4

BIOS name and version Amazon EC2 1.0, 10/16/2017 American Megatrends Inc. 090008,
12/7/2018

Operating system name and version/build
number

Microsoft Windows Server 2019 Datacenter
10.0.17763/Build 17763

Microsoft Windows Server 2019 Datacenter
10.0.17763/Build 17763

Date of last OS updates/patches applied 10/09/2020 10/09/2020

Processor

Number of processors 1 2

Vendor and model Intel® Xeon® Platinum 8259CL Intel Xeon Platinum 8272CL

Core count (per processor) 24 26

Core frequency (GHz) 2.50 2.60

Stepping 7 7

Hyper-Threading Yes Yes

Turbo Yes Yes

Number of vCPU per VM 32 64/32

Memory module(s)

Total memory in system (GB) 253 504

NVMe memory present? No No

Total memory (DDR + NVMe RAM) 253 504

General HW

Storage: NW or Direct Att / Instance NW Att NW Att

Network BW / Instance N/A N/A

Storage BW / Instance N/A N/A

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 3

System configuration information 32vCPU AWS EC2 r5b.8xlarge instance 64vCPU Azure E64_32s_v4 VM

Local storage

OS

Number of drives 1 1

Drive size (GB) 100 127

Drive information (speed, interface, type) gp2 Standard SSD

Data drive

Number of drives 6 6

Drive size (GB) 5,334 8,192

Drive information (speed, interface, type) gp2 Premium SSD (P60)

Temporary drive

Number of drives 0 0

Drive size (GB) N/A N/A

Network adapter

Vendor and model Amazon Elastic Network Adapter Microsoft Hyper-V Network Adapter

Number and type of ports 1 x 25Gb 1 x 50Gb

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 4

How we tested the AWS instance
For our testing, we used two VMs on each CSP – a client VM and a server VM. We created a single base VM (see “Creating the Windows
Server 2019 baseline image”) and saved an image from this VM for the client VM (see “Creating an AMI of your baseline client instance”).
With the base VM, we then installed SQL Server 2019 Enterprise Edition, saved a new image of the VM, and used the new image as our base
for the second VM.

Creating a database backup

Creating the TPC-C-like database
1. Open SQL Server Management Studio.
2. Right-click Databases, and choose New Database….
3. Name the database.
4. Click Filegroups, and click Add Filegroup.
5. Name the new filegroup, and set it to Default.
6. In the general tab, click Add to create 1 additional data file.
7. Name each file, and set the initial size for the new file to 200GB. Make sure the file is on the new Filegroup you created.
8. If necessary, change all data and log file paths to point to the data and log drives on the system.
9. On the options tab, set the Recovery Model to simple.
10. To start the build, click OK. Generating the data and loading it into the database
11. Open HammerDB.
12. Select OptionsBenchmark.
13. Choose MSSQL Server, and TPC-C.
14. Expand SQl ServerTPC-CSchema Build.
15. Double-click Options, enter the IP of the SQL Server, change the driver to ODBC Driver 17 for SQL Server, enter the SQL Server

Database name, set Number of Warehouses to 1,000, and select an appropriate number of Virtual Users to Build Schema. Click OK.
16. To begin the build, double-click Build.

Backing up the database
1. Open Microsoft SQL Management Studio, and right-click the TPC-C database.
2. Navigate to tasksBackup.
3. To set the name of your backup file and the location to store the file, on General, click Add….
4. In the left pane, click Backup Options.
5. Under Compression, select Compress backup.
6. Click Ok.

Creating the Windows Server 2019 baseline image

Creating the baseline image instance
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2
3. Click Launch instance, and to open the Launch Instance in the dropdown wizard, click Launch instance.
4. In the search window, type Windows Server, and press enter.
5. On Quick Start, click the Select button next to Microsoft Windows Server 2019 Base.
6. On Choose Instance Type, select t2.micro, and click “Next: Configure Instance Details.”On Configure Instance, set the following:

a. Number of instances: 1
b. Purchasing option: Leave unchecked
c. Network: Default VPCSubnet: Choose the region you are working inAuto-assign Public IP: EnablePlacement Group: Leave

uncheckedCapacity Reservation: Open
d. Domain join directory: No Directory
e. IAM role: None
f. Shutdown behavior: Stop
g. Click Next: Add StorageOn Add Storage, set the following:
h. Size: 30GB
i. Volume Type: gp2
j. Delete on Termination: Checked
k. Encryption: Not Encrypted
l. Click Next: Add Tags

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 5

7. On Add Tags, add any tags you wish to use. Click Next: Configure Security Group.
8. On Configure Security Group, leave defaults, and click Review and Launch.
9. On Review, click Launch.
10. Choose the appropriate option for the key pair, and click Launch Instances.

Configuring Windows 2019
1. Open Server Manager, and click Local Server.
2. Disable IE Enhanced Security Configuration.
3. Change the time zone to your local time zone.
4. Change the name of your server, and when prompted, reboot.
5. Open Server Manager again, and click Local Server.
6. Click to run updates.
7. Run updates, rebooting when prompted, until the server shows no new updates to install.

Installing HammerDB 3.3
1. Navigate to https://hammerdb.com/download.html, and download HammerDB.
2. Double-click the .exe file, choose English, and click OK.
3. Click Yes.
4. Click Next.
5. Chose a destination location, and click Next.
6. Click Next.
7. Click Finish.

Creating an AMI of your baseline client instance
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. Click Running instances.
4. Place a checkmark next to the instance from which you wish to create an image.
5. Click Action, and select ImageCreate Image.
6. Enter the Image name, and click Create Image.
7. To see your new image, in the menu on the left side of the page, navigate to Images -> AMIs.

Adding networking rules to security group
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. Click Security Groups.
4. Choose your newly created Security Group.
5. Under Inbound rules, click Edit inbound rules.
6. Click Add Rule.
7. Under Type, select All traffic.
8. Under Source, select the Security Group.
9. Click Add Rule.
10. Under Type, select RDP.
11. Under source, select My IP.
12. Click Save Rules.

Installing Microsoft SQL Server 2019 Enterprise

Note that each CSP has dropdown options during instance creation to pre-install SQL Server Enterprise edition. We chose to install SQL
Server Enterprise edition manually.

1. Using the baseline instance, create a new VM of the applicable instance type.
2. Download or copy the ISO to the server, and unzip it.
3. Double-click the Setup application.
4. Click InstallationNew SQL Server Standalone installation or add features to an existing installation.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 6

https://hammerdb.com/download.html

5. Choose the trial version, and click Next.
6. Check the I accept the license terms and Privacy Statement box, and click Next.
7. Check the Use Microsoft Update to check for updates (recommended) box, and click Next.
8. On the Install Rules page, click Next.
9. Check the boxes for the following features, and click Next:

a. Database Engine Services
b. Full-Test and Semantic Extractions for Search
c. Client Tools Connectivity
d. Client Tools Backwards Compatibility

10. Leave the Default instance, and click Next.
11. Leave the default Service Accounts, and click Next.
12. On the Server Configuration tab, choose Mixed Mode, and enter and confirm a Password for the SQL Server system

administrator (sa) account.
13. Click Add Current User to Specify the SQL Server administrators.
14. Click Next.
15. Once you’ve passed the rule check, click Next.
16. Click Install.
17. When the install finishes, navigate to the SQL Server Installation Center, and click Install SQL Server Management Tools.
18. Download the SSMS file, and install with defaults.
19. When prompted, reboot the serverd.
20. To ensure there aren’t any new updates for SQL, run Windows Update once more (make sure Windows Updates are set to get updates

for other Microsoft products).
21. To disable Windows Update service once you’ve installed all available updates, click the Start button , type services to open the

Services list, and disable the Windows Update service.

Editing MSSQLSERVER User Rights
1. Click Start, and type Local Security Policy. When the program appears in the search, open it.
2. Expand Local Policies, and click User Rights Assignment.
3. In the right-hand pane, scroll down, and double-click Lock pages in memory.
4. Click Add User or Group, type NT Service\MSSQLSERVER, and click OK.
5. To close the Properties window, click OK.
6. Double-click Perform Volume Maintenance Tasks.
7. Click Add User or Group, type NT Service\MSSQLSERVER, and click OK.
8. To close the Properties window, click OK, and close the Local Security Policy window.

Configuring SQL on the baseline image

Setting the SQL memory reserve and max degree of parallelism (MAXDOP)
1. Open the SQL Server Management Studio.
2. Right-click the SQL Instance, and click Properties.
3. Click Advanced node, scroll down to the Max Degree of Parallelism, and change the value to 1. Click OK.
4. Right-click the SQL Instance again, and navigate to Memory.
5. Set the Max Memory to 90% of the total memory in the system. Click OK, and close the Properties window.
6. Right-click the SQL instance, and restart the service. When prompted, click Yes.

Configuring the tempdb database
1. Open the SQL Server Management Studio.
2. Expand Databases and System databases, and right-click tempdb.
3. Add files, and change the starting size as necessary. We used eight 1GB files.
4. Right-click the SQL instance, and restart the service. When prompted, click Yes.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 7

Creating an AMI of your baseline SQL instance
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. Click Running instances.
4. Place a checkmark next to the instance from which you wish to create an image.
5. Click Action, and select Image -> Create Image.
6. Enter the image name, and click Create Image.
7. To see your new image, in the menu on the left side of the page, navigate to Images -> AMI.

Creating your instances with the baseline images

Creating the instance from your image
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. Click on ImagesAMIs.
4. Check the box next to the image you created in the previous step, and click Launch.
5. On Choose Instance Type, select your VM size, and click Next: Configure Instance Details.
6. On Configure Instance, set the following:
7. Number of instances: 1
8. Purchasing option: Leave uncheckedNetwork: Default VPCSubnet: Choose the region you are working inAuto-assign Public IP:

EnablePlacement Group: Leave uncheckedCapacity Reservation: Open
9. Domain join directory: No Directory
10. IAM role: None
11. Shutdown behavior: Stop
12. Click Next: Add StorageOn Add Storage, set the following:
13. Size: <Size>
14. Volume Type: Set your volume typeDelete on Termination: UncheckedEncryption: Not EncryptedClick Next: Add Tags
15. On Add Tags, add any tags you wish to use. Click Next: Configure Security Group.
16. On the Configure Security Group tab, leave the defaults, and click Review and Launch.
17. On the Review Tab, click Launch.
18. Choose the appropriate option for the key pair, and click Launch Instances.
19. Using the client AMI to create a client instance, repeat steps 3 through 11.

Creating, attaching, and formatting data disks

Creating and attaching data disks
1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. In the navigation pane, choose Elastic Block Store, Volumes.
4. Click Create Volume.
5. Under Volume Type, select General Purpose SSD (gp2).
6. Set size to 5,334GiB (the minimum size to max out IOPs on gp2).
7. Choose your desired Availability Zone.
8. Add any Tags you wish to use.
9. Click Create Volume.
10. On the Elastic Block Store, Volumes page, select your newly created drive.
11. Click Actions, and select Attach Volume.
12. From the list, choose your instance, and click Attach.
13. Repeat steps 4 through 12 until you have six attached data disks.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 8

Partitioning and formatting the drives
1. Log into the VM under test.
2. Open a Powershell instance with Administrator privileges.
3. To pool, partition, and format the disks as a single striped volume, run the following command:

$PhysicalDisks = Get-PhysicalDisk | Where-Object {$_.CanPool -eq $true}

New-StoragePool -FriendlyName “DataFiles” -StorageSubsystemFriendlyName “Windows Storage*” `

-PhysicalDisks $PhysicalDisks | New-VirtualDisk -FriendlyName “Datafiles” `

-Interleave 65536 -NumberOfColumns $PhysicalDisks.Count -ResiliencySettingName simple `

-UseMaximumSize |Initialize-Disk -PartitionStyle GPT -PassThru |New-Partition -AssignDriveLetter `

-UseMaximumSize |Format-Volume -FileSystem NTFS -NewFileSystemLabel “DataDisks” `

-AllocationUnitSize 65536 -Confirm:$false

Optimizing the database

Amazon Web Services (AWS) provided us with a script that modified the base TPC-C-like database. The script altered some row and page
locking settings and modified some stored procedures to improve OPM results for any solution running the benchmark.

Running the optimization script
1. Log into the SUT instance.
2. Open SQL Server Management Studio (SSMS).
3. Restore the tpcc database backup.
4. Run the tpcc_optimze.sql query (available at the end of this document).
5. Back up the optimized database.

Running the tests

In this section, we list the steps required to run the OLTP workload driven by a client instance against our instance under test. We use
HammerDB’s CLI and have included the scripts we used.

Running the TPC-C-like OLTP workload
1. Log into the client instance.
2. Navigate to the HammerDB folder, and edit load_parameters.tcl to point to the IP of your instance under test.
3. On the instance under test, start Perfmon.
4. On the client instance, open a command prompt, and navigate to the HammerDB folder.
5. Type the following command:

hammerdbcli.bat auto execture_test.tcl

6. When the run finishes, stop Perfmon, and save the HammerDB results file and Perfmon output.
7. Delete and restore the TPC-C database on the SQL VM.
8. Reboot the VMs.
9. Repeat the test two more times for a total of three runs, and record the median run.

execute_test.tcl
#!/usr/bin/tclsh

proc runtimer { seconds } {

set x 0

set timerstop 0

while {!$timerstop} {

 incr x

 after 1000

 if { ![expr {$x % 60}] } {

 set y [expr $x / 60]

 puts “Timer: $y minutes elapsed”

 }

 update

 if { [vucomplete] || $x eq $seconds } { set timerstop 1 }

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 9

 }

return

}

vuset logtotemp 1

source load_common_parameters.tcl

source load_parameters.tcl

loadscript

set intra_run_script “”

print dict

puts “*** TEST SEQUENCE STARTED ***”

foreach z { 144 } {

puts “***+ VU:$z”

if {$intra_run_script ne “”} {

 set log_time [clock seconds]

 puts “***+ tcl_timing +***{\”event_description\”:\”Executing $intra_run_
script\”,\”timestamp\”:$log_time}”

 if { [catch { exec bash $intra_run_script <<db_username>> <<db_password>> <<db_host>> <<db_name>>
2>> “results/intra_run_script_output.txt” } msg] } {

 puts “Intra run script wrote to stdout, but that’s OK”

 }

 set log_time [clock seconds]

 puts “***+ tcl_timing +***{\”event_description\”:\”Execution of $intra_run_script is
complete\”,\”timestamp\”:$log_time}”

}

set start_time [clock seconds]

puts “***+ Start Test:$start_time”

vuset vu $z

vuset showoutput 1

vuset delay 2000

vucreate

vurun

runtimer 1680

set end_time [clock seconds]

puts “***+ End Test:$end_time”

set elapsed [expr { $end_time - $start_time }]

puts “***+ tcl_timing +***{\”event_description\”:\”Executed test VU$z\”,\”timestamp\”:$end_
time,\”elapsed_time\”:$elapsed}”

vudestroy

after 5000

}

puts “*** TEST SEQUENCE COMPLETE ***”

exit

load_common_parameters.tcl
#!/usr/bin/tclsh

puts “***+ Run Set ID:20200917211908”

puts “***+ Run ID:20200917211908-0”

puts “***+ Run Sequence:0”

puts “***+ Warehouse Count:1000”

puts “*** LOADING COMMON PARAMETERS ***”

dbset db mssqls

dbset bm TPC-C

diset tpcc mssqls_count_ware 1000

diset tpcc mssqls_rampup 3

diset tpcc mssqls_duration 20

diset tpcc mssqls_driver timed

diset tpcc mssqls_allwarehouse true

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 10

diset tpcc mssqls_raiseerror true

diset tpcc mssqls_timeprofile true

diset tpcc mssqls_total_iterations 2147483648

puts “*** COMMON PARAMETERS LOADED ***”

load_parameters.tcl
#!/usr/bin/tclsh

diset connection mssqls_linux_server [SQL VM IP]

diset connection mssqls_server [SQL VM IP]

diset connection mssqls_uid sa

diset connection mssqls_pass [password]

diset connection mssqls_authentication sql

tpcc_optimize.sql
USE [master]

GO

PRINT N’Changing database settings...’;

GO

ALTER DATABASE [tpcc] SET AUTO_CREATE_STATISTICS OFF

GO

ALTER DATABASE [tpcc] SET AUTO_UPDATE_STATISTICS OFF WITH NO_WAIT

GO

ALTER DATABASE [tpcc] SET TARGET_RECOVERY_TIME = 300 SECONDS WITH NO_WAIT

GO

ALTER DATABASE [tpcc] SET DELAYED_DURABILITY = DISABLED WITH NO_WAIT

GO

USE [tpcc]

GO

PRINT N’Altering indexes on [dbo].[customer]...’;

GO

DROP INDEX dbo.customer.customer_i2

GO

CREATE NONCLUSTERED INDEX [customer_c_last]

 ON [dbo].[customer]([c_w_id] ASC, [c_d_id] ASC, [c_last] ASC, [c_first] ASC, [c_id] ASC) WITH (ALLOW_
PAGE_LOCKS = OFF);

 GO

PRINT N’Altering indexes on [dbo].[district]...’;

GO

DROP INDEX [dbo].[district].[d_details]

GO

CREATE NONCLUSTERED INDEX [district_d_id]

 ON [dbo].[district]([d_id] ASC) WITH (ALLOW_PAGE_LOCKS = OFF);

 GO

ALTER INDEX [PK_DISTRICT] ON [dbo].[district] SET (ALLOW_PAGE_LOCKS = OFF)

GO

PRINT N’Altering indexes on [dbo].[history]...’;

GO

CREATE CLUSTERED INDEX [history_i1]

 ON [dbo].[history]([h_c_w_id] ASC, [h_date] ASC, [h_c_d_id] ASC, [h_c_id] ASC, [h_amount] ASC);

GO

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 11

PRINT N’Altering indexes on [dbo].[item]...’;

GO

ALTER INDEX [PK_ITEM] ON [dbo].[item] SET (ALLOW_ROW_LOCKS = OFF)

GO

PRINT N’Altering indexes on [dbo].[new_order]...’;

GO

ALTER INDEX [new_order_i1] ON [dbo].[new_order] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [new_order_i1] ON [dbo].[new_order] SET (ALLOW_PAGE_LOCKS = ON)

GO

PRINT N’Altering indexes on [dbo].[order_line]...’;

GO

ALTER INDEX [order_line_i1] ON [dbo].[order_line] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [order_line_i1] ON [dbo].[order_line] SET (ALLOW_PAGE_LOCKS = ON)

GO

PRINT N’Altering indexes on [dbo].[orders]...’;

GO

ALTER INDEX [orders_i1] ON [dbo].[orders] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [orders_i1] ON [dbo].[orders] SET (ALLOW_PAGE_LOCKS = ON)

GO

ALTER INDEX [orders_i2] ON [dbo].[orders] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [orders_i2] ON [dbo].[orders] SET (ALLOW_PAGE_LOCKS = ON)

GO

PRINT N’Altering indexes on [dbo].[stock]...’;

GO

ALTER INDEX [PK_STOCK] ON [dbo].[stock] SET (ALLOW_PAGE_LOCKS = OFF)

GO

PRINT N’Altering indexes on [dbo].[warehouse]...’;

GO

ALTER INDEX [PK_WAREHOUSE] ON [dbo].[warehouse] SET (ALLOW_PAGE_LOCKS = OFF)

GO

DROP INDEX [dbo].[warehouse].[w_details]

GO

GO

PRINT N’Altering SqlProcedure [dbo].[ostat]...’;

GO

ALTER PROCEDURE [dbo].[ostat]

@os_w_id int,

@os_d_id int,

@os_c_id int,

@byname int,

@os_c_last char(20)

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 12

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@os_c_first char(16),

@os_c_middle char(2),

@os_c_balance money,

@os_o_id int,

@os_entdate datetime2(0),

@os_o_carrier_id int,

@os_ol_i_id INT,

@os_ol_supply_w_id INT,

@os_ol_quantity INT,

@os_ol_amount INT,

@os_ol_delivery_d DATE,

@namecnt int,

@i int

BEGIN TRANSACTION

BEGIN TRY

IF (@byname = 1)

BEGIN

 SELECT TOP 1

 @os_c_id = c_id,

 @os_c_balance = c_balance,

 @os_c_first = c_first,

 @os_c_middle = c_middle,

 @os_c_last = c_last

 FROM (

 SELECT TOP 50 PERCENT c_id, c_balance, c_first, c_middle, c_last

 FROM dbo.customer WITH (repeatableread)

 WHERE

 c_last = @os_c_last AND

 c_w_id = @os_w_id AND

 c_d_id = @os_d_id

 ORDER BY c_first) X

 ORDER BY c_first desc

END

ELSE

BEGIN

 SELECT @os_c_balance = customer.c_balance, @os_c_first = customer.c_first

 , @os_c_middle = customer.c_middle, @os_c_last = customer.c_last

 FROM dbo.customer WITH (repeatableread)

 WHERE customer.c_id = @os_c_id AND customer.c_d_id = @os_d_id AND customer.c_w_id = @os_w_id

END

BEGIN

SELECT TOP (1) @os_o_id = o_id, @os_o_carrier_id = o_carrier_id, @os_entdate = o_entry_d

FROM dbo.orders WITH (serializable)

WHERE orders.o_d_id = @os_d_id

AND orders.o_w_id = @os_w_id

AND orders.o_c_id = @os_c_id

ORDER BY orders.o_id DESC

IF @@ROWCOUNT = 0

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 13

PRINT ‘No orders for customer’;

END

SELECT order_line.ol_i_id

, order_line.ol_supply_w_id

, order_line.ol_quantity

, order_line.ol_amount

, order_line.ol_delivery_d

FROM dbo.order_line WITH (repeatableread)

WHERE order_line.ol_o_id = @os_o_id

AND order_line.ol_d_id = @os_d_id

AND order_line.ol_w_id = @os_w_id

SELECT @os_c_id as N’@os_c_id’, @os_c_last as N’@os_c_last’, @os_c_first as N’@os_c_first’, @os_c_middle
as N’@os_c_middle’, @os_c_balance as N’@os_c_balance’, @os_o_id as N’@os_o_id’, @os_entdate as
N’@os_entdate’, @os_o_carrier_id as N’@os_o_carrier_id’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[delivery]...’;

GO

ALTER PROCEDURE [dbo].[delivery]

@d_w_id int,

@d_o_carrier_id int,

@timestamp datetime2(0)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@d_no_o_id int,

@d_d_id int,

@d_c_id int,

@d_ol_total int

BEGIN TRANSACTION

BEGIN TRY

DECLARE

@loop_counter int

SET @loop_counter = 1

WHILE @loop_counter <= 10

BEGIN

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 14

SET @d_d_id = @loop_counter

SELECT TOP 1

@d_no_o_id = no_o_id

FROM dbo.new_order WITH (serializable updlock)

WHERE no_w_id = @d_w_id AND

no_d_id = @d_d_id

ORDER BY no_o_id ASC

IF (@@rowcount <> 0)

BEGIN

 -- claim the order for this district

 DELETE dbo.new_order

 WHERE no_w_id = @d_w_id AND

 no_d_id = @d_d_id AND

 no_o_id = @d_no_o_id

 UPDATE dbo.orders

 SET o_carrier_id = @d_o_carrier_id

 , @d_c_id = orders.o_c_id

 WHERE orders.o_id = @d_no_o_id

 AND orders.o_d_id = @d_d_id

 AND orders.o_w_id = @d_w_id

 SET @d_ol_total = 0

 UPDATE dbo.order_line

 SET ol_delivery_d = @timestamp

 , @d_ol_total = @d_ol_total + ol_amount

 WHERE order_line.ol_o_id = @d_no_o_id

 AND order_line.ol_d_id = @d_d_id

 AND order_line.ol_w_id = @d_w_id

 UPDATE dbo.customer SET c_balance = customer.c_balance + @d_ol_total

 WHERE customer.c_id = @d_c_id

 AND customer.c_d_id = @d_d_id

 AND customer.c_w_id = @d_w_id

END

PRINT

‘D: ‘

+

ISNULL(CAST(@d_d_id AS nvarchar(4000)), ‘’)

+

‘O: ‘

+

ISNULL(CAST(@d_no_o_id AS nvarchar(4000)), ‘’)

+

‘time ‘

+

ISNULL(CAST(@timestamp AS nvarchar(4000)), ‘’)

SET @loop_counter = @loop_counter + 1

END

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 15

SELECT @d_w_id as N’@d_w_id’, @d_o_carrier_id as N’@d_o_carrier_id’, @timestamp as N’@TIMESTAMP’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[payment]...’;

GO

ALTER PROCEDURE [dbo].[payment]

@p_w_id int,

@p_d_id int,

@p_c_w_id int,

@p_c_d_id int,

@p_c_id int,

@byname int,

@p_h_amount numeric(6,2),

@p_c_last char(16),

@TIMESTAMP datetime2(0)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@p_w_street_1 char(20),

@p_w_street_2 char(20),

@p_w_city char(20),

@p_w_state char(2),

@p_w_zip char(10),

@p_d_street_1 char(20),

@p_d_street_2 char(20),

@p_d_city char(20),

@p_d_state char(20),

@p_d_zip char(10),

@p_c_first char(16),

@p_c_middle char(2),

@p_c_street_1 char(20),

@p_c_street_2 char(20),

@p_c_city char(20),

@p_c_state char(20),

@p_c_zip char(9),

@p_c_phone char(16),

@p_c_since datetime2(0),

@p_c_credit char(32),

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 16

@p_c_credit_lim numeric(12,2),

@p_c_discount numeric(4,4),

@p_c_balance money, --numeric(12,2),

@p_c_data varchar(500),

@namecnt int,

@p_d_name char(11),

@p_w_name char(11),

@p_c_new_data varchar(500),

@h_data varchar(30)

BEGIN TRY

IF (@byname = 1)

BEGIN

SELECT TOP 1

 @p_c_id = c_id

FROM (

 SELECT TOP 50 PERCENT c_id, c_first

 FROM dbo.customer WITH (repeatableread)

 WHERE

 c_last = @p_c_last AND

 c_w_id = @p_c_w_id AND

 c_d_id = @p_c_d_id

 ORDER BY c_first) X

ORDER BY c_first desc

END

BEGIN TRANSACTION

-- get customer info and update balances

UPDATE dbo.customer

SET

 @p_c_balance = c_balance = c_balance - @p_h_amount,

 c_data =

 CASE

 WHEN c_credit <> ‘BC’ THEN c_credit

 ELSE LEFT(

 ISNULL(CAST(@p_c_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_c_d_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_c_w_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_d_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_w_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_h_amount AS CHAR(8)), ‘’) + ‘ ‘ +

 ISNULL(CAST(@TIMESTAMP AS char), ‘’) + ‘ ‘ +

 ISNULL(@p_w_name, ‘’) + ‘ ‘ +

 ISNULL(@p_d_name, ‘’) + ‘ ‘ +

 c_data,

 500)

 END,

 @p_c_first = c_first,

 @p_c_middle = c_middle,

 @p_c_last = c_last,

 @p_c_street_1 = c_street_1,

 @p_c_street_2 = c_street_2,

 @p_c_city = c_city,

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 17

 @p_c_state = c_state,

 @p_c_zip = c_zip,

 @p_c_phone = c_phone,

 @p_c_credit = c_credit,

 @p_c_credit_lim = c_credit_lim,

 @p_c_discount = c_discount,

 @p_c_since = c_since

WHERE

 c_id = @p_c_id AND

 c_w_id = @p_c_w_id AND

 c_d_id = @p_c_d_id

SET @h_data = (ISNULL(@p_w_name, ‘’) + ‘ ‘ + ISNULL(@p_d_name, ‘’))

INSERT dbo.history(h_c_d_id, h_c_w_id, h_c_id, h_d_id, h_w_id, h_date, h_amount, h_data)

VALUES (@p_c_d_id, @p_c_w_id, @p_c_id, @p_d_id, @p_w_id, @TIMESTAMP, @p_h_amount, @h_data)

-- get district data and update year-to-date

UPDATE dbo.district

SET

 d_ytd = d_ytd + @p_h_amount,

 @p_d_street_1 = d_street_1,

 @p_d_street_2 = d_street_2,

 @p_d_city = d_city,

 @p_d_state = d_state,

 @p_d_zip = d_zip,

 @p_d_name = d_name

WHERE

 d_w_id = @p_w_id AND

 d_id = @p_d_id

-- get warehouse data and update year-to-date

UPDATE dbo.warehouse

SET

 w_ytd = w_ytd + @p_h_amount,

 @p_w_street_1 = w_street_1,

 @p_w_street_2 = w_street_2,

 @p_w_city = w_city,

 @p_w_state = w_state,

 @p_w_zip = w_zip,

 @p_w_name = w_name

WHERE

 w_id = @p_w_id

SELECT @p_c_id as N’@p_c_id’, @p_c_last as N’@p_c_last’, @p_w_street_1 as N’@p_w_street_1’

, @p_w_street_2 as N’@p_w_street_2’, @p_w_city as N’@p_w_city’

, @p_w_state as N’@p_w_state’, @p_w_zip as N’@p_w_zip’

, @p_d_street_1 as N’@p_d_street_1’, @p_d_street_2 as N’@p_d_street_2’

, @p_d_city as N’@p_d_city’, @p_d_state as N’@p_d_state’

, @p_d_zip as N’@p_d_zip’, @p_c_first as N’@p_c_first’

, @p_c_middle as N’@p_c_middle’, @p_c_street_1 as N’@p_c_street_1’

, @p_c_street_2 as N’@p_c_street_2’

, @p_c_city as N’@p_c_city’, @p_c_state as N’@p_c_state’, @p_c_zip as N’@p_c_zip’

, @p_c_phone as N’@p_c_phone’, @p_c_since as N’@p_c_since’, @p_c_credit as N’@p_c_credit’

, @p_c_credit_lim as N’@p_c_credit_lim’, @p_c_discount as N’@p_c_discount’, @p_c_balance as
N’@p_c_balance’

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 18

, @p_c_data as N’@p_c_data’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[neword]...’;

GO

ALTER PROCEDURE [dbo].[neword]

@no_w_id int,

@no_max_w_id int,

@no_d_id int,

@no_c_id int,

@no_o_ol_cnt int,

@TIMESTAMP datetime2(0)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@no_c_discount smallmoney,

@no_c_last char(16),

@no_c_credit char(2),

@no_d_tax smallmoney,

@no_w_tax smallmoney,

@no_d_next_o_id int,

@no_ol_supply_w_id int,

@no_ol_i_id int,

@no_ol_quantity int,

@no_o_all_local int,

@o_id int,

@no_i_name char(24),

@no_i_price smallmoney,

@no_i_data char(50),

@no_s_quantity int,

@no_ol_amount int,

@no_s_dist_01 char(24),

@no_s_dist_02 char(24),

@no_s_dist_03 char(24),

@no_s_dist_04 char(24),

@no_s_dist_05 char(24),

@no_s_dist_06 char(24),

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 19

@no_s_dist_07 char(24),

@no_s_dist_08 char(24),

@no_s_dist_09 char(24),

@no_s_dist_10 char(24),

@no_ol_dist_info char(24),

@no_s_data char(50),

@x int,

@rbk int

BEGIN TRANSACTION

BEGIN TRY

SET @no_o_all_local = 0

SELECT

 @no_c_discount = c_discount,

 @no_c_last = c_last,

 @no_c_credit = c_credit

FROM dbo.customer

WHERE

 c_w_id = @no_w_id AND

 c_d_id = @no_d_id AND

 c_id = @no_c_id

UPDATE dbo.district

SET

 @no_d_tax = d_tax,

 @o_id = d_next_o_id,

 @no_d_next_o_id = d_next_o_id = district.d_next_o_id + 1

WHERE district.d_id = @no_d_id

AND district.d_w_id = @no_w_id

SET @rbk = CAST(100 * RAND() + 1 AS INT)

DECLARE

@loop_counter int

SET @loop_counter = 1

DECLARE

@loop$bound int

SET @loop$bound = @no_o_ol_cnt

WHILE @loop_counter <= @loop$bound

BEGIN

IF ((@loop_counter = @no_o_ol_cnt) AND (@rbk = 1))

SET @no_ol_i_id = 100001

ELSE

SET @no_ol_i_id = CAST(1000000 * RAND() + 1 AS INT)

SET @x = CAST(100 * RAND() + 1 AS INT)

IF (@x > 1)

SET @no_ol_supply_w_id = @no_w_id

ELSE

BEGIN

SET @no_ol_supply_w_id = @no_w_id

SET @no_o_all_local = 0

WHILE ((@no_ol_supply_w_id = @no_w_id) AND (@no_max_w_id != 1))

BEGIN

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 20

SET @no_ol_supply_w_id = CAST(@no_max_w_id * RAND() + 1 AS INT)

DECLARE

@db_null_statement$2 int

END

END

SET @no_ol_quantity = CAST(10 * RAND() + 1 AS INT)

SELECT @no_i_price = item.i_price

, @no_i_name = item.i_name

, @no_i_data = item.i_data

FROM dbo.item

WHERE item.i_id = @no_ol_i_id

UPDATE dbo.stock

SET

 s_quantity = s_quantity - @no_ol_quantity + CASE WHEN (s_quantity > @no_ol_quantity)
THEN 0 ELSE 91 END,

 @no_s_data = s_data,

 @no_ol_dist_info =

 CASE @no_d_id

 WHEN 1 THEN s_dist_01

 WHEN 2 THEN s_dist_02

 WHEN 3 THEN s_dist_03

 WHEN 4 THEN s_dist_04

 WHEN 5 THEN s_dist_05

 WHEN 6 THEN s_dist_06

 WHEN 7 THEN s_dist_07

 WHEN 8 THEN s_dist_08

 WHEN 9 THEN s_dist_09

 WHEN 10 THEN s_dist_10

 END

OUTPUT

 @o_id,

 @no_d_id,

 @no_w_id,

 @loop_counter,

 @no_ol_i_id,

 NULL,

 (@no_ol_quantity * @no_i_price),

 @no_ol_supply_w_id,

 @no_ol_quantity,

 CASE @no_d_id

 WHEN 1 THEN inserted.s_dist_01

 WHEN 2 THEN inserted.s_dist_02

 WHEN 3 THEN inserted.s_dist_03

 WHEN 4 THEN inserted.s_dist_04

 WHEN 5 THEN inserted.s_dist_05

 WHEN 6 THEN inserted.s_dist_06

 WHEN 7 THEN inserted.s_dist_07

 WHEN 8 THEN inserted.s_dist_08

 WHEN 9 THEN inserted.s_dist_09

 WHEN 10 THEN inserted.s_dist_10

 END

INTO dbo.order_line

WHERE

 stock.s_i_id = @no_ol_i_id AND

 stock.s_w_id = @no_ol_supply_w_id

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 21

SET @loop_counter = @loop_counter + 1

END

INSERT dbo.orders(o_id, o_d_id, o_w_id, o_c_id, o_entry_d, o_ol_cnt, o_all_local)

VALUES (@o_id, @no_d_id, @no_w_id, @no_c_id, @TIMESTAMP, @no_o_ol_cnt, @no_o_all_local)

INSERT dbo.new_order(no_o_id, no_d_id, no_w_id)

VALUES (@o_id, @no_d_id, @no_w_id)

IF (@rbk = 1)

ROLLBACK TRANSACTION

SELECT @no_w_tax = warehouse.w_tax

FROM dbo.warehouse

WHERE warehouse.w_id = @no_w_id

SELECT convert(char(8), @no_c_discount) as N’@no_c_discount’, @no_c_last as N’@no_c_last’, @no_c_
credit as N’@no_c_credit’, convert(char(8),@no_d_tax) as N’@no_d_tax’, convert(char(8),@no_w_tax)
as N’@no_w_tax’, @no_d_next_o_id as N’@no_d_next_o_id’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[slev]...’;

GO

ALTER PROCEDURE [dbo].[slev]

@st_w_id int,

@st_d_id int,

@threshold int

AS

BEGIN

DECLARE

@st_o_id_low int,

@st_o_id_high int

BEGIN TRANSACTION

BEGIN TRY

SELECT

@st_o_id_low = district.d_next_o_id - 20,

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 22

@st_o_id_high = district.d_next_o_id - 1

FROM dbo.district

WHERE district.d_w_id = @st_w_id AND district.d_id = @st_d_id

SELECT

COUNT(DISTINCT stock.s_i_id)

FROM dbo.order_line

, dbo.stock

WHERE order_line.ol_w_id = @st_w_id

AND order_line.ol_d_id = @st_d_id

AND order_line.ol_o_id BETWEEN @st_o_id_low AND @st_o_id_high

AND stock.s_w_id = order_line.ol_w_id

AND stock.s_i_id = order_line.ol_i_id

AND stock.s_quantity < @threshold

OPTION (ORDER GROUP)

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Update complete.’;

GO

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 23

How we tested the Azure VM

Creating a database backup

This section contains steps for creating a TPC-C-like database, generating data and loading the data onto the database, and making a
backup of the database.

Creating the TPC-C-like database
1. Open SQL Server Management Studio.
2. Right-click Databases, and choose New Database…
3. Name the database.
4. Click the Filegroups tab, and click Add Filegroup.
5. Name the new filegroup, and set it to Default.
6. In the general tab, to create one additional data file, click Add.
7. Name each file. Set the initial size for the new file to 200GB. Make sure the file is on the new Filegroup you created.
8. If necessary, change all data and log file paths to point to the data and log drives on the system.
9. On the Options tab, set the Recovery Model to simple.
10. To start the build, click OK. This may take a while.

Generating the data and loading It into the database
1. Open HammerDB.
2. Select OptionsBenchmark.
3. Choose MSSQL Server and TPC-C.
4. Expand SQl ServerTPC-CSchema Build.
5. Double-click Options, and perform the following actions:
6. Enter the IP of the SQL Server.
7. Change the driver to ODBC Driver 17 for SQL Server.
8. Enter the SQL Server Database name.
9. Set Number of Warehouses to 1000.
10. Select an appropriate number of Virtual Users to Build Schema.
11. Click OK.
12. To begin the build, double-click Build.

Backing up the database
1. Open Microsoft SQL Management Studio, and right-click the TPC-C database.
2. Navigate to TasksBackup.
3. On the General tab, to set the name of your backup file and the location to store the file, click Add….
4. In the left-hand pane, click Backup Options.
5. Under Compression, select Compress backup.
6. Click Ok.

Creating the Microsoft Windows Server 2019 baseline image

Creating the baseline image VM
1. Log into the Azure Portal, and navigate to the Virtual Machines service.
2. To open the Add VM wizard, click Add.
3. On the Basics tab, set the following:
4. Choose your Subscription from the dropdown menu.
5. Choose your Resource group from the dropdown menu.
6. Name the Virtual Machine.
7. Choose your Region from the dropdown menu.
8. Leave the Availability options set to No infrastructure redundancy required.
9. Choose Windows Server 2019 Datacenter from the Image dropdown menu.
10. Leave Azure Spot instance set to No.
11. Select the instance size you wish to use. We used Standard B4ms.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 24

12. Choose a new username and password for the Administrator account.
13. Leave Public inbound ports set to Allow selected ports.
14. For Select inbound ports, choose SSH (22).
15. On the Disks tab, set the following:
16. For the OS disk type, choose Standard HDD from the dropdown menu.
17. Leave the default Encryption type.
18. On the Networking tab, set the following:
19. Choose your Virtual network from the dropdown menu.
20. To create a new Public IP, choose Create new.
21. Leave the rest of the settings at defaults.
22. On the Management tab, set the following:
23. Choose your Diagnostics storage account from the dropdown menu.
24. Leave the rest set to defaults.
25. On the Advanced tab, leave all defaults.
26. On the Tags tab, add any tags you wish to use.
27. On the Review + create tab, review your settings, and click Create.

Configuring Windows Server 2019
1. Open Server Manager, and click on Local Server.
2. Disable IE Enhanced Security Configuration.
3. Change the time zone to your local time zone.
4. Change the name of your server, and reboot when prompted.
5. Open Server Manager again, and click on Local Server.
6. Click to run updates.
7. Run updates, rebooting when prompted, until the server shows no new updates to install.

Creating a snapshot of your baseline client VM
1. In your Azure portal, navigate to the Snapshots service.
2. To open the Snapshot wizard, click Add.
3. On the Basics tab, set the following:

a. Choose your Subscription from the dropdown menu.
b. Choose your Resource group from the dropdown menu.
c. Enter a name for your snapshot.
d. Choose your Region from the dropdown menu.
e. Select Full - make a complete read-only copy of the selected disk for the Snapshot type.
f. Choose the OS disk from your baseline VM.
g. Choose Standard SSD for the Storage type.

4. On the Encryption tab, leave all defaults.
5. On the Tags tab, add any tags you wish to use.
6. On the Review + create tab, review your settings, and click Create.

Installing Microsoft SQL Server 2019 Enterprise
1. Download or copy the ISO to the server, and unzip it.
2. Double-click the Setup application.
3. Click InstallationNew SQL Server Standalone installation or add features to an existing installation.
4. Choose the trial version, and click Next.
5. Check the I accept the license terms and Privacy Statement box, and click Next.
6. Check the Use Microsoft Update to check for updates (recommended) box, and click Next.
7. On the Install Rules page, click Next.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 25

8. Check the boxes for the following features, and click Next:

a. Database Engine Services
b. Full-Test and Semantic Extractions for Search
c. Client Tools Connectivity
d. Client Tools Backwards Compatibility

9. Leave the Default instance, and click Next.
10. Leave the default Service Accounts, and click Next.
11. On the Server Configuration tab, choose Mixed Mode and enter and confirm a Password for the SQL Server system

administrator (sa) account.
12. Click Add Current User to Specify the SQL Server administrators.
13. Click Next.
14. Once you’ve passed the rule check, click Next.
15. Click Install.
16. When the installation is complete, go back to the SQL Server Installation Center, and click Install SQL Server Management Tools.
17. Download the SSMS file, and install with defaults.
18. When prompted, reboot the server.
19. Run Windows Update one more time to ensure there aren’t any new updates for SQL (make sure Windows Updates are set to get

updates for other Microsoft products).
20. Once you’ve installed all available updates, disable Windows Update service:
21. Click Start.
22. To open the Services list, type services
23. Disable the Windows Update service.

Locking pages in memory
1. Click Start, and type Local Security Policy
2. Open the Security program.Expand Local Policies, and click User Rights Assignment.
3. In the right-hand pane, scroll down and double-click Lock pages in memory.
4. Click Add User or Group, type NT Service\MSSQLSERVER, and click OK.
5. To close the Properties window, click OK. Close the Local Security Policy window.

Installing HammerDB 3.3
1. Download HammerDB from https://hammerdb.com/download.html.
2. Double-click the .exe file, choose English, and click OK.
3. Click Yes.
4. Click Next.
5. Chose a destination location, and click Next.
6. Click Next.
7. Click Finish.

Creating a snapshot of your baseline SQL Server VM
1. In the Azure portal, navigate to the Snapshots service.
2. To open the Snapshot wizard, click Add.On the Basics tab, set the following:

a. Choose your Subscription from the dropdown menu.
b. Choose your Resource group from the dropdown menu.
c. Enter a name for your snapshot.
d. Choose your Region from the dropdown menu.
e. For the Snapshot type, celect Full - make a complete read-only copy of the selected disk.
f. Choose the OS disk from your baseline VM.
g. For the Storage type, choose Standard SSD.On the Encryption tab, leave all defaults.

3. On the Tags tab, add any tags you wish to use.
4. On the Review + create tab, review your settings, and click Create.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 26

https://hammerdb.com/download.html

Creating images with the baseline snapshots
To create an image, you must first have a Shared Image Gallery. The steps below will walk you through the creation of the gallery as well as
the image creation steps. Once you have created your gallery, you will not need to do so again to add new images.

1. In the Azure portal, navigate to the Shared image galleries service.
2. To open the Add gallery wizard, click Add.On the Basics tab, set the following:

a. Choose your Subscription from the dropdown menu.
b. Choose your Resource from the dropdown menu.
c. Name your gallery.
d. Choose your Region from the dropdown menu.
e. Enter a Description, if you’d like.

3. On the Tags tab, add any tags you wish to use.
4. On the Review + create tab, review your settings, and click Create.
5. Click on your new image gallery. To open the wizard, click Add new image definition.
6. On the Basics tab, set the following:

a. Set the Operating System to Windows.
b. Set the Operation system state to Specialized.
c. Enter whatever you wish for the Publisher, Offer, and SKU entries.

7. Skip the Version tab.
8. Skip the Publishing options tab.
9. On the Tags tab, add any tags you wish to use.
10. On the Review + create tab, review your settings, and click Create.
11. Click on the image definition you’ve created, and click Add version to open the wizard.
12. On the Basics tab, set the following:

a. Enter a version number, such as 1.0.0Choose the OS disk snapshot of the baseline client VM you created from
the dropdown menu.

b. Leave the rest as defaults.

13. On the Encryption tab, leave defaults.
14. On the Tags tab, add any tags you wish to use.
15. On the Review + create tab, review your settings, and click Create.
16. Repeat steps 5 through 15 for the SQL Server VM, using the OS disk snapshot of the baseline SQL VM in step 12.

Creating the VMs under test

In this section we list the steps required to create a VM from the image we created previously.

Creating VMs from the specialized Images
1. Open the Azure Portal, and navigate to the Shared image galleries service.
2. Click on the Shared image gallery you created.
3. Navigate to the image version you created (we used 1.0.0), and click Create VM.
4. On the Basics tab, set the following:

a. Choose your Subscription from the dropdown menu.
b. Choose your Resource group from the dropdown menu.
c. Enter a Virtual machine name.
d. Choose Availability Zone and set the Zone you desire.
e. Select the instance size.
f. Under Licensing, select Windows server.
g. Leave the rest as defaults.

5. On the Disks tab, set the following:

a. Change the OS disk type to Standard HDD.
b. Click Create and attach a new disk.

i. In the Create a new disk wizard, click Change size, and pick the size of Premium SSD that matches your instance type.
ii. Leave the rest as defaults, and click OK.

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 27

6. Skip the Networking, Management, and Advanced tabs.
7. On the Tags tab, assign any tags you wish to use.
8. On the Review + create tab, review your settings, and click Create.
9. Once the VM creation is finished, click Go to resource (or, navigate to the virtual machine service and, click the new VM).
10. Click ConnectàRDP, and download the RDP file.
11. Double-click the RDP file, and log in with the user and password you set previously.
12. Right-click the Windows Start button, and click Disk Management.
13. On the GPT partition popup window, click OK.
14. Right-click the Premium SSD you added, and follow the prompts to create a new NTFS volume for the database.

Configuring SQL Server on the VMs under test
In this section, we list the various SQL Server settings that we changed and the steps for changing them.

Setting the SQL Server memory reserve and max degree of parallelism (MAXDOP)
1. Open the SQL Server Management Studio.
2. Right-click on the SQL Instance, and click Properties.
3. Click Advanced node. Scroll down to Max Degree of Parallelism, and change the value to 1Click OK.
4. Right-click the SQL Instance, and go to Memory.
5. Set the Max Memory to 90% of the total memory in the system.
6. Click OK, and close the Properties window.
7. Right-click the SQL Instance, and restart the service.
8. When prompted, click Yes.

Configuring the tempdb database
1. Open the SQL Server Management Studio
2. Expand Databases and System databases, and right-click tempdb.
3. Add files, and change the starting size as necessary. We used 8x 1GB files.
4. Right-click the SQL Server instance, and restart the service.
5. When prompted, click Yes.

Creating, attaching, and formatting data disks

Creating and attaching data disks
1. Open the Azure Portal, and navigate to Virtual machines.
2. Select your VM under test, and click Disks.
3. Under Data disks, click Create and attach a new disk.
4. Name the disk.
5. Leave the Storage type as Premium SSD.
6. Set the Size to 8192 GiB.
7. Leave default Encryption (SSE with PMK) and Host caching (None).
8. Repeat steps 3 through 7 until you have 6 data disks.
9. Click Save.

Partitioning and formatting the drives
1. Log into the VM under test.
2. Open a Powershell instance with Administrator privileges.
3. Run the following command to pool, partition, and format the disks as a single striped volume:

$PhysicalDisks = Get-PhysicalDisk | Where-Object {$_.CanPool -eq $true}

New-StoragePool -FriendlyName “DataFiles” -StorageSubsystemFriendlyName “Windows Storage*” `

-PhysicalDisks $PhysicalDisks | New-VirtualDisk -FriendlyName “Datafiles” `

-Interleave 65536 -NumberOfColumns $PhysicalDisks.Count -ResiliencySettingName simple `

-UseMaximumSize |Initialize-Disk -PartitionStyle GPT -PassThru |New-Partition -AssignDriveLetter `

-UseMaximumSize |Format-Volume -FileSystem NTFS -NewFileSystemLabel “DataDisks” `

-AllocationUnitSize 65536 -Confirm:$false

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 28

Optimizing the database

AWS provided us with a script that modified the base TPC-C-like database. The script altered certain row and page locking settings, and
modified certain stored procedures with the aim of improving OPM results for any solution running the benchmark.

Running the optimization script
1. Log into the SUT instance.
2. Open SQL Server Management Studio (SSMS).
3. Restore the tpcc database backup.
4. Run the tpcc_optimze.sql query (available at the end of this document).
5. Back up the optimized database.

Running the tests

In this section, we list the steps required to run the OLTP workload driven by a client VM against our in VM under test. We use HammerDB’s
CLI, and include the scripts to be used below. We tested on a 1,000 warehouse

Running the TPC-C-like OLTP workload
1. Log into the client instance.
2. Navigate to the HammerDB folder, and edit load_parameters.tcl to point to the IP of your VM under test.
3. On the instance under test, start Perfmon.
4. On the client instance, open a command prompt, and navigate to the HammerDB folder.
5. Type the following command:

hammerdbcli.bat auto execture_test.tcl

6. When the run finishes, stop Perfmon, and save the HammerDB results file and Perfmon output.
7. On the SQL Server VM, delete and restore the TPC-C database.
8. Reboot the VMs.
9. Repeat the test two more times for a total of three runs, and record the median run.

execute_test.tcl
#!/usr/bin/tclsh

proc runtimer { seconds } {

set x 0

set timerstop 0

while {!$timerstop} {

 incr x

 after 1000

 if { ![expr {$x % 60}] } {

 set y [expr $x / 60]

 puts “Timer: $y minutes elapsed”

 }

 update

 if { [vucomplete] || $x eq $seconds } { set timerstop 1 }

 }

return

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 29

}

vuset logtotemp 1

source load_common_parameters.tcl

source load_parameters.tcl

loadscript

set intra_run_script “”

print dict

puts “*** TEST SEQUENCE STARTED ***”

foreach z { 144 } {

puts “***+ VU:$z”

if {$intra_run_script ne “”} {

 set log_time [clock seconds]

 puts “***+ tcl_timing +***{\”event_description\”:\”Executing $intra_run_
script\”,\”timestamp\”:$log_time}”

 if { [catch { exec bash $intra_run_script <<db_username>> <<db_password>> <<db_host>> <<db_name>>
2>> “results/intra_run_script_output.txt” } msg] } {

 puts “Intra run script wrote to stdout, but that’s OK”

 }

 set log_time [clock seconds]

 puts “***+ tcl_timing +***{\”event_description\”:\”Execution of $intra_run_script is
complete\”,\”timestamp\”:$log_time}”

}

set start_time [clock seconds]

puts “***+ Start Test:$start_time”

vuset vu $z

vuset showoutput 1

vuset delay 2000

vucreate

vurun

runtimer 1680

set end_time [clock seconds]

puts “***+ End Test:$end_time”

set elapsed [expr { $end_time - $start_time }]

puts “***+ tcl_timing +***{\”event_description\”:\”Executed test VU$z\”,\”timestamp\”:$end_
time,\”elapsed_time\”:$elapsed}”

vudestroy

after 5000

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 30

}

puts “*** TEST SEQUENCE COMPLETE ***”

exit

load_common_parametes.tcl
#!/usr/bin/tclsh

puts “***+ Run Set ID:20200917211908”

puts “***+ Run ID:20200917211908-0”

puts “***+ Run Sequence:0”

puts “***+ Warehouse Count:1000”

puts “*** LOADING COMMON PARAMETERS ***”

dbset db mssqls

dbset bm TPC-C

diset tpcc mssqls_count_ware 1000

diset tpcc mssqls_rampup 3

diset tpcc mssqls_duration 20

diset tpcc mssqls_driver timed

diset tpcc mssqls_allwarehouse true

diset tpcc mssqls_raiseerror true

diset tpcc mssqls_timeprofile true

diset tpcc mssqls_total_iterations 2147483648

puts “*** COMMON PARAMETERS LOADED ***”

load_parameters.tcl
#!/usr/bin/tclsh

diset connection mssqls_linux_server [SQL VM IP]

diset connection mssqls_server [SQL VM IP]

diset connection mssqls_uid sa

diset connection mssqls_pass [password]

diset connection mssqls_authentication sql

tpcc_optimize.sql
USE [master]

GO

PRINT N’Changing database settings...’;

GO

ALTER DATABASE [tpcc] SET AUTO_CREATE_STATISTICS OFF

GO

ALTER DATABASE [tpcc] SET AUTO_UPDATE_STATISTICS OFF WITH NO_WAIT

GO

ALTER DATABASE [tpcc] SET TARGET_RECOVERY_TIME = 300 SECONDS WITH NO_WAIT

GO

ALTER DATABASE [tpcc] SET DELAYED_DURABILITY = DISABLED WITH NO_WAIT

GO

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 31

USE [tpcc]

GO

PRINT N’Altering indexes on [dbo].[customer]...’;

GO

DROP INDEX dbo.customer.customer_i2

GO

CREATE NONCLUSTERED INDEX [customer_c_last]

 ON [dbo].[customer]([c_w_id] ASC, [c_d_id] ASC, [c_last] ASC, [c_first] ASC, [c_id] ASC) WITH (ALLOW_
PAGE_LOCKS = OFF);

 GO

PRINT N’Altering indexes on [dbo].[district]...’;

GO

DROP INDEX [dbo].[district].[d_details]

GO

CREATE NONCLUSTERED INDEX [district_d_id]

 ON [dbo].[district]([d_id] ASC) WITH (ALLOW_PAGE_LOCKS = OFF);

 GO

ALTER INDEX [PK_DISTRICT] ON [dbo].[district] SET (ALLOW_PAGE_LOCKS = OFF)

GO

PRINT N’Altering indexes on [dbo].[history]...’;

GO

CREATE CLUSTERED INDEX [history_i1]

 ON [dbo].[history]([h_c_w_id] ASC, [h_date] ASC, [h_c_d_id] ASC, [h_c_id] ASC, [h_amount] ASC);

GO

PRINT N’Altering indexes on [dbo].[item]...’;

GO

ALTER INDEX [PK_ITEM] ON [dbo].[item] SET (ALLOW_ROW_LOCKS = OFF)

GO

PRINT N’Altering indexes on [dbo].[new_order]...’;

GO

ALTER INDEX [new_order_i1] ON [dbo].[new_order] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [new_order_i1] ON [dbo].[new_order] SET (ALLOW_PAGE_LOCKS = ON)

GO

PRINT N’Altering indexes on [dbo].[order_line]...’;

GO

ALTER INDEX [order_line_i1] ON [dbo].[order_line] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [order_line_i1] ON [dbo].[order_line] SET (ALLOW_PAGE_LOCKS = ON)

GO

PRINT N’Altering indexes on [dbo].[orders]...’;

GO

ALTER INDEX [orders_i1] ON [dbo].[orders] SET (ALLOW_ROW_LOCKS = OFF)

GO

ALTER INDEX [orders_i1] ON [dbo].[orders] SET (ALLOW_PAGE_LOCKS = ON)

GO

ALTER INDEX [orders_i2] ON [dbo].[orders] SET (ALLOW_ROW_LOCKS = OFF)

GO

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 32

ALTER INDEX [orders_i2] ON [dbo].[orders] SET (ALLOW_PAGE_LOCKS = ON)

GO

PRINT N’Altering indexes on [dbo].[stock]...’;

GO

ALTER INDEX [PK_STOCK] ON [dbo].[stock] SET (ALLOW_PAGE_LOCKS = OFF)

GO

PRINT N’Altering indexes on [dbo].[warehouse]...’;

GO

ALTER INDEX [PK_WAREHOUSE] ON [dbo].[warehouse] SET (ALLOW_PAGE_LOCKS = OFF)

GO

DROP INDEX [dbo].[warehouse].[w_details]

GO

GO

PRINT N’Altering SqlProcedure [dbo].[ostat]...’;

GO

ALTER PROCEDURE [dbo].[ostat]

@os_w_id int,

@os_d_id int,

@os_c_id int,

@byname int,

@os_c_last char(20)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@os_c_first char(16),

@os_c_middle char(2),

@os_c_balance money,

@os_o_id int,

@os_entdate datetime2(0),

@os_o_carrier_id int,

@os_ol_i_id INT,

@os_ol_supply_w_id INT,

@os_ol_quantity INT,

@os_ol_amount INT,

@os_ol_delivery_d DATE,

@namecnt int,

@i int

BEGIN TRANSACTION

BEGIN TRY

IF (@byname = 1)

BEGIN

 SELECT TOP 1

 @os_c_id = c_id,

 @os_c_balance = c_balance,

 @os_c_first = c_first,

 @os_c_middle = c_middle,

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 33

 @os_c_last = c_last

 FROM (

 SELECT TOP 50 PERCENT c_id, c_balance, c_first, c_middle, c_last

 FROM dbo.customer WITH (repeatableread)

 WHERE

 c_last = @os_c_last AND

 c_w_id = @os_w_id AND

 c_d_id = @os_d_id

 ORDER BY c_first) X

 ORDER BY c_first desc

END

ELSE

BEGIN

 SELECT @os_c_balance = customer.c_balance, @os_c_first = customer.c_first

 , @os_c_middle = customer.c_middle, @os_c_last = customer.c_last

 FROM dbo.customer WITH (repeatableread)

 WHERE customer.c_id = @os_c_id AND customer.c_d_id = @os_d_id AND customer.c_w_id = @os_w_id

END

BEGIN

SELECT TOP (1) @os_o_id = o_id, @os_o_carrier_id = o_carrier_id, @os_entdate = o_entry_d

FROM dbo.orders WITH (serializable)

WHERE orders.o_d_id = @os_d_id

AND orders.o_w_id = @os_w_id

AND orders.o_c_id = @os_c_id

ORDER BY orders.o_id DESC

IF @@ROWCOUNT = 0

PRINT ‘No orders for customer’;

END

SELECT order_line.ol_i_id

, order_line.ol_supply_w_id

, order_line.ol_quantity

, order_line.ol_amount

, order_line.ol_delivery_d

FROM dbo.order_line WITH (repeatableread)

WHERE order_line.ol_o_id = @os_o_id

AND order_line.ol_d_id = @os_d_id

AND order_line.ol_w_id = @os_w_id

SELECT @os_c_id as N’@os_c_id’, @os_c_last as N’@os_c_last’, @os_c_first as N’@os_c_first’, @os_c_middle
as N’@os_c_middle’, @os_c_balance as N’@os_c_balance’, @os_o_id as N’@os_o_id’, @os_entdate as
N’@os_entdate’, @os_o_carrier_id as N’@os_o_carrier_id’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 34

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[delivery]...’;

GO

ALTER PROCEDURE [dbo].[delivery]

@d_w_id int,

@d_o_carrier_id int,

@timestamp datetime2(0)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@d_no_o_id int,

@d_d_id int,

@d_c_id int,

@d_ol_total int

BEGIN TRANSACTION

BEGIN TRY

DECLARE

@loop_counter int

SET @loop_counter = 1

WHILE @loop_counter <= 10

BEGIN

SET @d_d_id = @loop_counter

SELECT TOP 1

@d_no_o_id = no_o_id

FROM dbo.new_order WITH (serializable updlock)

WHERE no_w_id = @d_w_id AND

no_d_id = @d_d_id

ORDER BY no_o_id ASC

IF (@@rowcount <> 0)

BEGIN

 -- claim the order for this district

 DELETE dbo.new_order

 WHERE no_w_id = @d_w_id AND

 no_d_id = @d_d_id AND

 no_o_id = @d_no_o_id

 UPDATE dbo.orders

 SET o_carrier_id = @d_o_carrier_id

 , @d_c_id = orders.o_c_id

 WHERE orders.o_id = @d_no_o_id

 AND orders.o_d_id = @d_d_id

 AND orders.o_w_id = @d_w_id

 SET @d_ol_total = 0

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 35

 UPDATE dbo.order_line

 SET ol_delivery_d = @timestamp

 , @d_ol_total = @d_ol_total + ol_amount

 WHERE order_line.ol_o_id = @d_no_o_id

 AND order_line.ol_d_id = @d_d_id

 AND order_line.ol_w_id = @d_w_id

 UPDATE dbo.customer SET c_balance = customer.c_balance + @d_ol_total

 WHERE customer.c_id = @d_c_id

 AND customer.c_d_id = @d_d_id

 AND customer.c_w_id = @d_w_id

END

PRINT

‘D: ‘

+

ISNULL(CAST(@d_d_id AS nvarchar(4000)), ‘’)

+

‘O: ‘

+

ISNULL(CAST(@d_no_o_id AS nvarchar(4000)), ‘’)

+

‘time ‘

+

ISNULL(CAST(@timestamp AS nvarchar(4000)), ‘’)

SET @loop_counter = @loop_counter + 1

END

SELECT @d_w_id as N’@d_w_id’, @d_o_carrier_id as N’@d_o_carrier_id’, @timestamp as N’@TIMESTAMP’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[payment]...’;

GO

ALTER PROCEDURE [dbo].[payment]

@p_w_id int,

@p_d_id int,

@p_c_w_id int,

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 36

@p_c_d_id int,

@p_c_id int,

@byname int,

@p_h_amount numeric(6,2),

@p_c_last char(16),

@TIMESTAMP datetime2(0)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@p_w_street_1 char(20),

@p_w_street_2 char(20),

@p_w_city char(20),

@p_w_state char(2),

@p_w_zip char(10),

@p_d_street_1 char(20),

@p_d_street_2 char(20),

@p_d_city char(20),

@p_d_state char(20),

@p_d_zip char(10),

@p_c_first char(16),

@p_c_middle char(2),

@p_c_street_1 char(20),

@p_c_street_2 char(20),

@p_c_city char(20),

@p_c_state char(20),

@p_c_zip char(9),

@p_c_phone char(16),

@p_c_since datetime2(0),

@p_c_credit char(32),

@p_c_credit_lim numeric(12,2),

@p_c_discount numeric(4,4),

@p_c_balance money, --numeric(12,2),

@p_c_data varchar(500),

@namecnt int,

@p_d_name char(11),

@p_w_name char(11),

@p_c_new_data varchar(500),

@h_data varchar(30)

BEGIN TRY

IF (@byname = 1)

BEGIN

SELECT TOP 1

 @p_c_id = c_id

FROM (

 SELECT TOP 50 PERCENT c_id, c_first

 FROM dbo.customer WITH (repeatableread)

 WHERE

 c_last = @p_c_last AND

 c_w_id = @p_c_w_id AND

 c_d_id = @p_c_d_id

 ORDER BY c_first) X

ORDER BY c_first desc

END

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 37

BEGIN TRANSACTION

-- get customer info and update balances

UPDATE dbo.customer

SET

 @p_c_balance = c_balance = c_balance - @p_h_amount,

 c_data =

 CASE

 WHEN c_credit <> ‘BC’ THEN c_credit

 ELSE LEFT(

 ISNULL(CAST(@p_c_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_c_d_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_c_w_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_d_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_w_id AS char), ‘’) + ‘ ‘ +

 ISNULL(CAST(@p_h_amount AS CHAR(8)), ‘’) + ‘ ‘ +

 ISNULL(CAST(@TIMESTAMP AS char), ‘’) + ‘ ‘ +

 ISNULL(@p_w_name, ‘’) + ‘ ‘ +

 ISNULL(@p_d_name, ‘’) + ‘ ‘ +

 c_data,

 500)

 END,

 @p_c_first = c_first,

 @p_c_middle = c_middle,

 @p_c_last = c_last,

 @p_c_street_1 = c_street_1,

 @p_c_street_2 = c_street_2,

 @p_c_city = c_city,

 @p_c_state = c_state,

 @p_c_zip = c_zip,

 @p_c_phone = c_phone,

 @p_c_credit = c_credit,

 @p_c_credit_lim = c_credit_lim,

 @p_c_discount = c_discount,

 @p_c_since = c_since

WHERE

 c_id = @p_c_id AND

 c_w_id = @p_c_w_id AND

 c_d_id = @p_c_d_id

SET @h_data = (ISNULL(@p_w_name, ‘’) + ‘ ‘ + ISNULL(@p_d_name, ‘’))

INSERT dbo.history(h_c_d_id, h_c_w_id, h_c_id, h_d_id, h_w_id, h_date, h_amount, h_data)

VALUES (@p_c_d_id, @p_c_w_id, @p_c_id, @p_d_id, @p_w_id, @TIMESTAMP, @p_h_amount, @h_data)

-- get district data and update year-to-date

UPDATE dbo.district

SET

 d_ytd = d_ytd + @p_h_amount,

 @p_d_street_1 = d_street_1,

 @p_d_street_2 = d_street_2,

 @p_d_city = d_city,

 @p_d_state = d_state,

 @p_d_zip = d_zip,

 @p_d_name = d_name

WHERE

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 38

 d_w_id = @p_w_id AND

 d_id = @p_d_id

-- get warehouse data and update year-to-date

UPDATE dbo.warehouse

SET

 w_ytd = w_ytd + @p_h_amount,

 @p_w_street_1 = w_street_1,

 @p_w_street_2 = w_street_2,

 @p_w_city = w_city,

 @p_w_state = w_state,

 @p_w_zip = w_zip,

 @p_w_name = w_name

WHERE

 w_id = @p_w_id

SELECT @p_c_id as N’@p_c_id’, @p_c_last as N’@p_c_last’, @p_w_street_1 as N’@p_w_street_1’

, @p_w_street_2 as N’@p_w_street_2’, @p_w_city as N’@p_w_city’

, @p_w_state as N’@p_w_state’, @p_w_zip as N’@p_w_zip’

, @p_d_street_1 as N’@p_d_street_1’, @p_d_street_2 as N’@p_d_street_2’

, @p_d_city as N’@p_d_city’, @p_d_state as N’@p_d_state’

, @p_d_zip as N’@p_d_zip’, @p_c_first as N’@p_c_first’

, @p_c_middle as N’@p_c_middle’, @p_c_street_1 as N’@p_c_street_1’

, @p_c_street_2 as N’@p_c_street_2’

, @p_c_city as N’@p_c_city’, @p_c_state as N’@p_c_state’, @p_c_zip as N’@p_c_zip’

, @p_c_phone as N’@p_c_phone’, @p_c_since as N’@p_c_since’, @p_c_credit as N’@p_c_credit’

, @p_c_credit_lim as N’@p_c_credit_lim’, @p_c_discount as N’@p_c_discount’, @p_c_balance as
N’@p_c_balance’

, @p_c_data as N’@p_c_data’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[neword]...’;

GO

ALTER PROCEDURE [dbo].[neword]

@no_w_id int,

@no_max_w_id int,

@no_d_id int,

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 39

@no_c_id int,

@no_o_ol_cnt int,

@TIMESTAMP datetime2(0)

AS

BEGIN

SET ANSI_WARNINGS OFF

DECLARE

@no_c_discount smallmoney,

@no_c_last char(16),

@no_c_credit char(2),

@no_d_tax smallmoney,

@no_w_tax smallmoney,

@no_d_next_o_id int,

@no_ol_supply_w_id int,

@no_ol_i_id int,

@no_ol_quantity int,

@no_o_all_local int,

@o_id int,

@no_i_name char(24),

@no_i_price smallmoney,

@no_i_data char(50),

@no_s_quantity int,

@no_ol_amount int,

@no_s_dist_01 char(24),

@no_s_dist_02 char(24),

@no_s_dist_03 char(24),

@no_s_dist_04 char(24),

@no_s_dist_05 char(24),

@no_s_dist_06 char(24),

@no_s_dist_07 char(24),

@no_s_dist_08 char(24),

@no_s_dist_09 char(24),

@no_s_dist_10 char(24),

@no_ol_dist_info char(24),

@no_s_data char(50),

@x int,

@rbk int

BEGIN TRANSACTION

BEGIN TRY

SET @no_o_all_local = 0

SELECT

 @no_c_discount = c_discount,

 @no_c_last = c_last,

 @no_c_credit = c_credit

FROM dbo.customer

WHERE

 c_w_id = @no_w_id AND

 c_d_id = @no_d_id AND

 c_id = @no_c_id

UPDATE dbo.district

SET

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 40

 @no_d_tax = d_tax,

 @o_id = d_next_o_id,

 @no_d_next_o_id = d_next_o_id = district.d_next_o_id + 1

WHERE district.d_id = @no_d_id

AND district.d_w_id = @no_w_id

SET @rbk = CAST(100 * RAND() + 1 AS INT)

DECLARE

@loop_counter int

SET @loop_counter = 1

DECLARE

@loop$bound int

SET @loop$bound = @no_o_ol_cnt

WHILE @loop_counter <= @loop$bound

BEGIN

IF ((@loop_counter = @no_o_ol_cnt) AND (@rbk = 1))

SET @no_ol_i_id = 100001

ELSE

SET @no_ol_i_id = CAST(1000000 * RAND() + 1 AS INT)

SET @x = CAST(100 * RAND() + 1 AS INT)

IF (@x > 1)

SET @no_ol_supply_w_id = @no_w_id

ELSE

BEGIN

SET @no_ol_supply_w_id = @no_w_id

SET @no_o_all_local = 0

WHILE ((@no_ol_supply_w_id = @no_w_id) AND (@no_max_w_id != 1))

BEGIN

SET @no_ol_supply_w_id = CAST(@no_max_w_id * RAND() + 1 AS INT)

DECLARE

@db_null_statement$2 int

END

END

SET @no_ol_quantity = CAST(10 * RAND() + 1 AS INT)

SELECT @no_i_price = item.i_price

, @no_i_name = item.i_name

, @no_i_data = item.i_data

FROM dbo.item

WHERE item.i_id = @no_ol_i_id

UPDATE dbo.stock

SET

 s_quantity = s_quantity - @no_ol_quantity + CASE WHEN (s_quantity > @no_ol_quantity)
THEN 0 ELSE 91 END,

 @no_s_data = s_data,

 @no_ol_dist_info =

 CASE @no_d_id

 WHEN 1 THEN s_dist_01

 WHEN 2 THEN s_dist_02

 WHEN 3 THEN s_dist_03

 WHEN 4 THEN s_dist_04

 WHEN 5 THEN s_dist_05

 WHEN 6 THEN s_dist_06

 WHEN 7 THEN s_dist_07

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 41

 WHEN 8 THEN s_dist_08

 WHEN 9 THEN s_dist_09

 WHEN 10 THEN s_dist_10

 END

OUTPUT

 @o_id,

 @no_d_id,

 @no_w_id,

 @loop_counter,

 @no_ol_i_id,

 NULL,

 (@no_ol_quantity * @no_i_price),

 @no_ol_supply_w_id,

 @no_ol_quantity,

 CASE @no_d_id

 WHEN 1 THEN inserted.s_dist_01

 WHEN 2 THEN inserted.s_dist_02

 WHEN 3 THEN inserted.s_dist_03

 WHEN 4 THEN inserted.s_dist_04

 WHEN 5 THEN inserted.s_dist_05

 WHEN 6 THEN inserted.s_dist_06

 WHEN 7 THEN inserted.s_dist_07

 WHEN 8 THEN inserted.s_dist_08

 WHEN 9 THEN inserted.s_dist_09

 WHEN 10 THEN inserted.s_dist_10

 END

INTO dbo.order_line

WHERE

 stock.s_i_id = @no_ol_i_id AND

 stock.s_w_id = @no_ol_supply_w_id

SET @loop_counter = @loop_counter + 1

END

INSERT dbo.orders(o_id, o_d_id, o_w_id, o_c_id, o_entry_d, o_ol_cnt, o_all_local)

VALUES (@o_id, @no_d_id, @no_w_id, @no_c_id, @TIMESTAMP, @no_o_ol_cnt, @no_o_all_local)

INSERT dbo.new_order(no_o_id, no_d_id, no_w_id)

VALUES (@o_id, @no_d_id, @no_w_id)

IF (@rbk = 1)

ROLLBACK TRANSACTION

SELECT @no_w_tax = warehouse.w_tax

FROM dbo.warehouse

WHERE warehouse.w_id = @no_w_id

SELECT convert(char(8), @no_c_discount) as N’@no_c_discount’, @no_c_last as N’@no_c_last’, @no_c_
credit as N’@no_c_credit’, convert(char(8),@no_d_tax) as N’@no_d_tax’, convert(char(8),@no_w_tax)
as N’@no_w_tax’, @no_d_next_o_id as N’@no_d_next_o_id’

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 42

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Altering SqlProcedure [dbo].[slev]...’;

GO

ALTER PROCEDURE [dbo].[slev]

@st_w_id int,

@st_d_id int,

@threshold int

AS

BEGIN

DECLARE

@st_o_id_low int,

@st_o_id_high int

BEGIN TRANSACTION

BEGIN TRY

SELECT

@st_o_id_low = district.d_next_o_id - 20,

@st_o_id_high = district.d_next_o_id - 1

FROM dbo.district

WHERE district.d_w_id = @st_w_id AND district.d_id = @st_d_id

SELECT

COUNT(DISTINCT stock.s_i_id)

FROM dbo.order_line

, dbo.stock

WHERE order_line.ol_w_id = @st_w_id

AND order_line.ol_d_id = @st_d_id

AND order_line.ol_o_id BETWEEN @st_o_id_low AND @st_o_id_high

AND stock.s_w_id = order_line.ol_w_id

AND stock.s_i_id = order_line.ol_i_id

AND stock.s_quantity < @threshold

OPTION (ORDER GROUP)

END TRY

BEGIN CATCH

SELECT

ERROR_NUMBER() AS ErrorNumber

,ERROR_SEVERITY() AS ErrorSeverity

,ERROR_STATE() AS ErrorState

,ERROR_PROCEDURE() AS ErrorProcedure

,ERROR_LINE() AS ErrorLine

,ERROR_MESSAGE() AS ErrorMessage;

IF @@TRANCOUNT > 0

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 43

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims
any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any
particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its
subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of
the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with
Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.

This project was commissioned by AWS.

Principled
Technologies®

Facts matter.®Principled
Technologies®

Facts matter.®

ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

COMMIT TRANSACTION;

END

GO

PRINT N’Update complete.’;

GO

Read the report at http://facts.pt/5ro20rg

Deliver better performance for transactional database workloads at a lower cost by choosing an Amazon EC2 R5b instance March 2021 (Revised) | 44

http://www.principledtechnologies.com
http://facts.pt/5ro20rg

	_Hlk63667060
	_Hlk42166478

