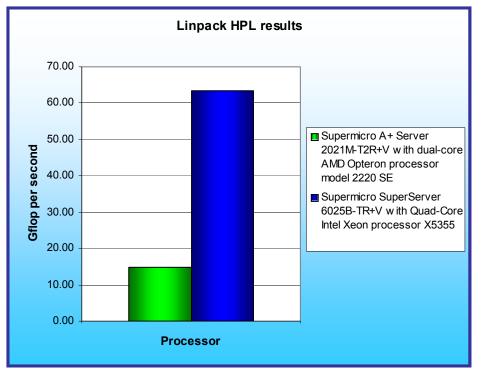


Linpack HPL performance on Intel- and AMD-processorbased servers running Red Hat Enterprise Linux v.4.4

Executive summary

Intel Corporation (Intel) commissioned Principled Technologies (PT) to measure the LINPACK HPL performance of dual-processor servers using the following systems running Red Hat Enterprise Linux v.4.4:

- Supermicro SuperServer 6025B-TR+V with dualcore AMD Opteron processor model 2220 SE
- Supermicro SuperServer 6025B-TR+V with Quad-Core Intel Xeon processor X5355


KEY FINDINGS

 The Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s delivered 227 percent higher peak performance on the Linpack WR00C2C4 test than the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs (see Figure 1).

In this section, we discuss the best results for each server. For complete details of the performance of each benchmark for each server, see the Test results section.

Linpack HPL produces performance results as the number of billions of floating point operations per second (Gigaflops per second, or Gflops per second, or Gflops/s).

Figure 1 shows the Linpack Benchmark results, in Gflops/s, of a sample test WR00C2C4 (one of the 18 Linpack benchmarks we ran) for the test servers. To obtain the median results, we performed three runs with each server and selected the benchmark on which the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs produced its highest score. That benchmark was WR00C2C4. We then took the median result from the three runs of that benchmark for both servers. A higher Linpack score is better, because it indicates that the server is faster at floating point operations.

The Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s produced the higher results, 63.47 Gflops/s, while the Supermicro A+ Server 2021M-T2R+V with two dualcore AMD Opteron processor model 2220 SEs achieved 19.41 Gflops/s. The Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s thus delivered a 227 percent performance increase over the Supermicro A+ Server 2021M-T2R+V with two dualcore AMD Opteron processor model 2220 SEs.

Figure 1: Linpack HPL results, in Gflops per second of a sample test WR00C2C4 for the test servers. Higher numbers of Gflops per second are better.

Figure 2 shows the complete median Linpack HPL run results, in Gflops/s, for each of the 18 benchmarks we ran on both servers.

Test name	Supermicro A+ Server 2021M-T2R+V with dual-core AMD Opteron processor model 2220 SE	Supermicro SuperServer 6025B-TR+V with Quad-Core Intel Xeon processor X5355
WR00L2L2	19.35	63.47
WR00L2L4	19.50	63.53
WR00L2C2	19.45	63.42
WR00L2C4	19.42	63.52
WR00L2R2	19.43	63.45
WR00L2R4	19.28	63.55
WR00C2L2	19.35	63.30
WR00C2L4	19.49	63.49
WR00C2C2	19.44	63.33
WR00C2C4	19.41	63.47
WR00C2R2	19.50	63.55
WR00C2R4	19.49	63.59
WR00R2L2	19.43	63.43
WR00R2L4	19.42	63.45
WR00R2C2	19.41	63.39
WR00R2C4	19.39	63.57
WR00R2R2	19.48	63.53
WR00R2R4	19.51	63.57

Figure 2: Median Linpack HPL run results of all 18 benchmarks, in Gflops per second, for each server. Higher numbers are better.

Workload

The Linpack benchmark is an industry-standard benchmark created in 1979 by Jack Dongarra. The Linpack benchmark solves linear equations and uses the speed of the system under test at that task as a measure of the system's floating-point performance. Linpack reports its results in billions of floating point operations per second, or Gflops/s.

We used the HPL version of the Linpack Benchmark. HPL is a portable implementation of the High Performance Computing Linpack benchmark that generates, solves, checks, and times the solution process of a random dense linear system of equations. The HPL software package uses 64-bit floating point arithmetic and portable routines for linear algebra operations and message passing. The HPL code offers the advantage of allowing testers to select from among multiple factorization algorithms.

Test results

Figure 3 shows the Linpack HPL results for the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs for all three runs. Run 2 produced the median results.

Supermicro A+ Serve	er 2021M-T2R+V with dua	I-core AMD Opteron proc	cessor model 2220 SE
Test name	Run 1	Run 2	Run 3
WR00L2L2	19.24	19.35	19.29
WR00L2L4	19.37	19.50	19.46
WR00L2C2	19.53	19.45	19.37
WR00L2C4	19.49	19.42	19.40
WR00L2R2	19.44	19.43	19.44
WR00L2R4	19.48	19.28	19.40
WR00C2L2	19.42	19.35	19.36
WR00C2L4	19.49	19.49	19.51
WR00C2C2	19.44	19.44	19.45
WR00C2C4	19.53	19.41	19.38
WR00C2R2	19.41	19.50	19.41
WR00C2R4	19.49	19.49	19.30
WR00R2L2	19.47	19.43	19.38
WR00R2L4	19.39	19.42	19.35
WR00R2C2	19.39	19.41	19.44
WR00R2C4	19.47	19.39	19.48
WR00R2R2	19.37	19.48	19.38
WR00R2R4	19.45	19.51	19.41

Figure 3: Linpack HPL benchmark results, in Gflops per second, for the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs. Higher numbers are better.

Figure 4 shows the Linpack HPL results for the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s for all three runs. Run 3 produced the median results.

Supermicro Sup	erServer 6025B-TR+V wi	th Quad-Core Intel Xeon	processor X5355
Test name	Run 1	Run 2	Run 3
WR00L2L2	63.52	62.92	63.47
WR00L2L4	63.81	63.37	63.53
WR00L2C2	63.47	63.14	63.42
WR00L2C4	63.90	63.45	63.52
WR00L2R2	63.76	63.17	63.45
WR00L2R4	63.83	63.40	63.55
WR00C2L2	63.67	63.16	63.30
WR00C2L4	63.69	63.29	63.49
WR00C2C2	63.66	63.01	63.33
WR00C2C4	63.69	63.07	63.47
WR00C2R2	63.93	63.28	63.55
WR00C2R4	63.83	63.32	63.59
WR00R2L2	63.65	62.98	63.43
WR00R2L4	63.70	63.14	63.45
WR00R2C2	63.61	63.07	63.39
WR00R2C4	63.86	63.21	63.57
WR00R2R2	63.63	62.93	63.53
WR00R2R4	63.74	63.31	63.57

Figure 4: Linpack HPL benchmark results, in Gflops per second, for the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s. Higher numbers are better.

Test methodology

Figure 5 summarizes some key aspects of the configurations of the server systems; Appendix A provides detailed configuration information.

Server	Supermicro A+ Server 2021M- T2R+V with two dual-core AMD Opteron processor model 2220 SEs	Supermicro SuperServer 6025B-TR+V with two Quad- Core Intel Xeon processor X5355s
Processor frequency (GHz)	2.8 GHz	2.66 GHz
System bus	2000 MHz HyperTransport	1333 MHz
Number of processor packages	2	2
Number of cores per processor package	2	4
Number of hardware threads per core	1	1
Motherboard	Super H8DME-2	Supermicro X7DBE+
Chipset	NVIDIA MCP55 Pro	Intel 5000P Chipset
RAM (8GB in each)	PC2-5300	PC2-5300 FBDIMM
Hard Drive	Western Digital WD740ADFD 74 GB 10,000 RPM	Western Digital WD740ADFD 74 GB 10,000 RPM
NICs	NVIDIA MCP55 Pro Chipset Dual-Port Ethernet Controller	Intel PRO/1000 EB Network Dual Port Network Connection

Figure 5: Summary of some key aspects of the server configurations.

Intel configured and provided both servers.

With the following exceptions, we used the default BIOS settings on each server: on the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs, we changed the OS installation option to Linux.

We began by installing a fresh copy of Red Hat Enterprise Linux v.4.4 on both servers. We installed each system with the default operating system (OS) installation options.

Linpack configuration

We used the following three software components for this test:

- MVAPICH2-0.9.8 (source: <u>http://nowlab.cse.ohio-state.edu/projects/mpi-iba/</u>)
- GotoBLAS (source: <u>http://www.tacc.utexas.edu/resources/software/</u>)
- HPL (source: <u>http://www.netlib.org/benchmark/hpl/</u>)

For both servers and all software components, we compiled the components from source. We accepted the default file system layout for both the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s and the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs. We then created our work directory under the root directory on each server. To simplify the description below, we will refer to the working directory as \$HPL_HOME.

To build MVAPICH2, we did the following:

- 1. Unpack the MVAPICH2-0.9.8.tar.gz archive in \$HPL_HOME. This step creates the mvaich2-0.9.8 directory.
- 2. Type "cd to \$HPL_HOME/mvapich2-0.9.8".
- 3. Type "./make.mvapich2.tcp". (Note that the two test systems did not have host channel adaptors, which is why we built the program on TCP.)
- 4. Create the ".mpd.password" and ".mod.conf" files as the MVAPICH documentation specifies.
- 5. Put a single entry in the mpd.hosts file, "localhost".
- 6. Create a setup.sh script to set the PATH environment variable to include "\$HPL_HOME/mvapich2-0.9.8/bin".
- 7. Verify MVAPICH2-0.9.8 is working by typing the following commands:
 - . ./setup.sh (Note the necessary space after the first dot.)
 - mpd & (launches the mp daemon)
 - mpdtrace (will show you the systems it's running on)
 - mpdallexit (kills the daemon)

To build GotoBLAS, we did the following:

- 1. Unpack the GotoBLAS-1.10.tar.gz archive in \$HPL_HOME. This creates the GotoBLAS directory.
- 2. Type "cd to \$HPL_HOME /GotoBLAS".
- 3. Edit the Makefile.rule file and make the following changes:
 - BINARY64=1
 - SMP=1
 - MAX_THREADS=# of cores 8 for the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s server and 4 for the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs. (The maximum number of threads reflects the number of available execution units on each system.)
- 4. Run "./quickbuild.64bit".
- 5. Copy the "libgoto_<arch>-r1-.10.a" file to \$HPL_HOME. On the Supermicro SuperServer 6025B-TR+V Red Hat system, this file's name will be "libgoto_core2p-r1-.10.a". On the Supermicro A+ Server 2021M-T2R+V system, the file name will be "libgoto_opteronp-r1-.10.a".

To build HPL, we did following:

- 1. Unpack the hpl.gz archive in \$HPL_HOME/mvapich2-0.9.8. This step creates the hpl directory.
- 2. Type "cd to \$HPL_HOME/mvapich2-0.9.8/hpl".

- 3. Edit the Makefile and set arch to "em64t" (for the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s server) or "opt64" (for the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs).
- 4. Create the Make.em64t or Make.opt64 file, as appropriate for the system (see Appendix B).
- 5. Type "make".
- 6. After you install the benchmark, use the HPL dat file in Appendix B.

To run HPL, we did the following:

- 1. Type "cd to /\$HPL_HOME/mvapich2-0.9.8".
- 2. Type ". ./setup.sh ". (Note the necessary space after the first dot.)
- 3. Type "mpd &" to start the mpi daemon.
- 4. Type "cd hpl/bin/em64t" (for the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s server) or "cd hpl/bin/opt64" (for the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs).
- 5. Type "mpirun -n 2 ./xhpl".
- 6. By default, the output goes to the screen. Either redirect the output to a file to save it or copy it from the console window after the test.

Appendix A – Test server configuration information This appendix provides detailed configuration information about each of the test server systems, which we list in

alphabetical order.

Systems	Supermicro A+ Server 2021M- T2R+V with two dual-core AMD Opteron processor model 2220 SEs	Supermicro SuperServer 6025B-TR+V with two Quad- Core Intel Xeon processor X5355s
General processor setup	1	1
Number of processor packages	2	2
Number of cores per processor package	2	4
Number of hardware threads per core	1	1
CPU		
Vendor	AMD	Intel
Name	dual-core AMD Opteron processor model 2220 SE	Quad-Core Intel Xeon processor X5355
Stepping	2	7
Socket type	F	LGA 771
Core frequency (GHz)	2.8 GHz	2.66 GHz
Front-side bus frequency (MHz)	2000 MHz HyperTransport	1333 MHz
L1 Cache	64 KB + 64 KB (per core)	32 KB + 32 KB (per core)
L2 Cache	2 x 1 MB	2 x 4MB (each 4MB shared by 2 cores)
Platform		
Vendor and model number	dual-core AMD Opteron processor model 2220 SE-based server	Quad-Core Intel Xeon processor X5355-based server
Motherboard model number	Super H8DME-2	Supermicro X7DBE+
Motherboard chipset	NVIDIA MCP55 Pro	Intel 5000P Chipset
Motherboard revision number	A2	92
Motherboard serial number	Q5785G16010104	TM66S06520
BIOS name and version	American Megatrends Inc. AMIBIOS 08.00.14 11/28/06	Phoenix BIOS DB8A026 Rev 1.1c
BIOS settings	OS installation Linux	Default
Memory module(s)		
Vendor and model number	Hynix HYMP525P72BP4-Y5	Kingston KVR667D2D4F5/2G
Туре	PC-5300	PC2-5300 FBDIMM
Speed (MHz)	667 MHz	667 MHz
Speed in the system currently running @ (MHz)	667 MHz	667 MHz
Timing/Latency (tCL-tRCD-iRP- tRASmin)	5-5-5-15	5-5-5-15
Size	8186 MB	8196 MB
Number of RAM modules	4	4
Chip organization	Double-Sided	Double-Sided
Hard disk		
Vendor and model number	Western Digital Raptor WD740ADFD	Western Digital Raptor WD740ADFD
Number of disks in system	1	1
Size	74 GB	74 GB

Buffer Size	8 MB	8 MB
RPM	10,000	10,000
Туре	SATA	SATA
	NVIDIA MCP55 Pro SATA2	Intel 3100 Chipset SATA
Controller	Controller	Controller
Controller driver	sata nv	Ata piix
Operating system	. –	
News	Red Hat Enterprise Linux 4	Red Hat Enterprise Linux 4
Name	Advanced Server	Advanced Server
Build number	v.4.4	v.4.4
File system	Ext3	Ext3
Kernel	2.6.9-42.ELsmp	2.6.9-42.ELsmp
Language	English	English
Graphics		
Vendor and model number	ATI ES1000	ATI ES1000
Chipset	ATI ES1000 PCI	ATI ES1000 PCI
Туре	Integrated	Integrated
Resolution	1024 x 768	1024 x 768
Driver	ATI ES1000	ATI ES1000
Network card/subsystem		
Vendor and model number	NVIDIA MCP55 Pro Chipset Dual-	Intel PRO/1000 EB Network Dual
	Port Ethernet Controller	Port Network Connection
Туре	Integrated	Integrated
Driver	eth0	eth0
Optical drive		
Vendor and model number	Matshita DVD-ROM SR-8178	Matshita DVD-ROM SR-8178
Туре	DVD-ROM	CD/DVD
Interface	Internal	Internal
Dual/Single layer	Single	Single
USB ports		
Number	4	4
Туре	USB 2.0	USB 2.0

Figure 6: Detailed system configuration information for the test servers.

Appendix B – Linpack HPL configuration files

This appendix contains the benchmark configuration files we used to test the servers.

Makefile.em64t: Configuration file for the Supermicro SuperServer 6025B-TR+V with two Quad-Core Intel Xeon processor X5355s

#

- # -- High Performance Computing Linpack Benchmark (HPL)
- # HPL 1.0a January 20, 2004
- # Antoine P. Petitet
- # University of Tennessee, Knoxville
- # Innovative Computing Laboratories
- # (C) Copyright 2000-2004 All Rights Reserved

-- Copyright notice and Licensin

```
# -- Copyright notice and Licensing terms:
```

Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions
 # are met:
 # 1. Redistributions of source code must retain the above convirght

H	T. Redistributions of source code must retain the above copyright
#	notice, this list of conditions and the following disclaimer.
#	-
#	2. Redistributions in binary form must reproduce the above copyright
#	notice, this list of conditions, and the following disclaimer in the
ш	all a sum a set of the second (second because of a second all a second all a set of the second because of the second s

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this

software must display the following acknowledgement: # This product includes software developed at the University

- # This product includes software developed at the University of # Tennessee, Knoxville, Innovative Computing Laboratories.
- # 4. The name of the University, the name of the Laboratory, or the # names of its contributors may not be used to endorse or promote # products derived from this software without specific written # permission. # -- Disclaimer: # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY # # OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

```
#
# ---
```

- shell ------# -------# SHELL = /bin/sh # CD = cd CP = cp LN S = ln -s

LN_S	= In -s	
MKDIR	= mkdir	
RM	= /bin/rm -f	
TOUCH	= touch	
#		

- Platform identifier -----_____ # # ARCH = em64t # # - HPL Directory Structure / HPL library ------# # #TOPdir = \$(HOME)/mvapich/hpl TOPdir = /hpl_stuff/mvapich2-0.9.8/hpl = \$(TOPdir)/include INCdir = \$(TOPdir)/bin/\$(ARCH) BINdir LIBdir = \$(TOPdir)/lib/\$(ARCH) # HPLlib = \$(LIBdir)/libhpl.a # # # - Message Passing library (MPI) ------± # MPinc tells the C compiler where to find the Message Passing library # header files, MPlib is defined to be the name of the library to be # used. The variable MPdir is only used for defining MPinc and MPlib. #MPdir = /opt/mvapich-0.9.7-1/gnu MPdir = /hpl stuff/mvapich2-0.9.8 = -I\$(MPdir)/include MPinc MPlib = -L\$(MPdir)/lib \$(MPdir)/lib/libmpich.a # # # - Linear Algebra library (BLAS or VSIPL) ------# LAinc tells the C compiler where to find the Linear Algebra library # header files, LAlib is defined to be the name of the library to be # used. The variable LAdir is only used for defining LAinc and LAlib. LAdir = /hpl_stuff/mvapich2-0.9.8/hpl LAinc = \$(LAdir)/libgoto_core2p-r1.03.a #LAlib #LAlib = \$(LAdir)/libgoto_opt64-r0.94-2.so = \$(LAdir)/libgoto_core2p-r1.10.a LAlib ## # -# - F77 / C interface ------# # You can skip this section if and only if you are not planning to use # a BLAS library featuring a Fortran 77 interface. Otherwise, it is # necessary to fill out the F2CDEFS variable with the appropriate # options. **One and only one** option should be chosen in **each** of # the 3 following categories: # 1) name space (How C calls a Fortran 77 routine) # : all lower case and a suffixed underscore (Suns, # -DAdd Intel, ...), [default] # : all lower case (IBM RS6000), # -DNoChange # -DUpCase : all upper case (Cray), : the FORTRAN compiler in use is f2c. # -DAdd # # 2) C and Fortran 77 integer mapping #-DF77_INTEGER=int : Fortran 77 INTEGER is a C int, [default] #-DF77_INTEGER=long : Fortran 77 INTEGER is a C long, #-DF77_INTEGER=short : Fortran 77 INTEGER is a C short. # 3) Fortran 77 string handling # -DStringSunStyle : The string address is passed at the string loca-# tion on the stack, and the string length is then

```
#
               passed as an F77_INTEGER after all explicit
#
               stack arguments,
                                              [default]
#-DStringStructPtr : The address of a structure is passed by a
               Fortran 77 string, and the structure is of the
#
#
               form: struct {char *cp; F77 INTEGER len;},
#
  -DStringStructVal : A structure is passed by value for each Fortran
               77 string, and the structure is of the form:
#
               struct {char *cp; F77_INTEGER len;},
#
#-DStringCrayStyle : Special option for Cray machines, which uses
               Cray fcd (fortran character descriptor) for
#
#
               interoperation.
#
F2CDEFS = -DF77_INTEGER=int
#
#
# - HPL includes / libraries / specifics ------
#
HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) $(LAinc) $(MPinc)
HPL_LIBS = $(HPLlib) $(LAlib) $(MPlib) /hpl_stuff/mvapich2-0.9.8/hpl/src/xerbla.o
# - Compile time options ------
#
                        force the copy of the panel L before bcast:
# -DHPL_COPY_L
# -DHPL_CALL_CBLAS call the cblas interface;
# -DHPL_CALL_VSIPL call the vsip library;
# -DHPL_DETAILED_TIMING enable detailed timers;
# By default HPL will:

*) not copy L before broadcast,
*) call the BLAS Fortran 77 interface,

#
#
   *) not display detailed timing information.
#
#
#HPL_OPTS = -DHPL_CALL_CBLAS
#
#
         _____
HPL_DEFS = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES)
#
# -
# - Compilers / linkers - Optimization flags ------
# -----
#
#CC
          = /usr/bin/gcc
         = $(MPdir)/bin/mpicc
CC
CCNOOPT = $(HPL_DEFS)
CCFLAGS = $(HPL_DEFS) -fomit-frame-pointer -O3 -funroll-loops -Bstatic
#CCFLAGS = $(HPL_DEFS) -g *** For debugging
#
# On some platforms, it is necessary to use the Fortran linker to find
# the Fortran internals used in the BLAS library.
#
#LINKER
           = /usr/bin/g77
LINKER = $(MPdir)/bin/mpicc
#LINKFLAGS = $(CCFLAGS) -Bstatic
LINKFLAGS = $(CCFLAGS) - Im -B static
#LINKFLAGS = $(CCNOOPT) - Im ***For debugging
#
ARCHIVER = ar
ARFLAGS = r
RANLIB
          = echo
±
#
```

Makefile.opt64: Configuration file for the Supermicro A+ Server 2021M-T2R+V with two dual-core AMD Opteron processor model 2220 SEs

-- High Performance Computing Linpack Benchmark (HPL) # HPL - 1.0a - January 20, 2004 Antoine P. Petitet # # University of Tennessee, Knoxville # Innovative Computing Laboratories (C) Copyright 2000-2004 All Rights Reserved # # # -- Copyright notice and Licensing terms: # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions # # are met # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the # # documentation and/or other materials provided with the distribution. # 3. All advertising materials mentioning features or use of this software must display the following acknowledgement: # This product includes software developed at the University of Tennessee, Knoxville, Innovative Computing Laboratories. # # 4. The name of the University, the name of the Laboratory, or the names of its contributors may not be used to endorse or promote products derived from this software without specific written # # permission. # # -- Disclaimer: # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES. INCLUDING. BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY # OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ± # # - shell ------# # SHELL = /bin/sh # CD = cd CP = cp LN S = ln -s MKDIR = mkdir RM = /bin/rm -f TOUCH = touch # # - Platform identifier ------_____ # ARCH = opt64 #

- HPL Directory Structure / HPL library ------# # #TOPdir = \$(HOME)/mvapich/hpl = /export/home/hpl_stuff/mvapich2-0.9.8/hpl TOPdir INCdir = \$(TOPdir)/include = \$(TOPdir)/bin/\$(ARCH) **BINdir** = \$(TOPdir)/lib/\$(ARCH) LIBdir # HPLlib = \$(LIBdir)/libhpl.a # # # - Message Passing library (MPI) ------# # MPinc tells the C compiler where to find the Message Passing library # header files, MPlib is defined to be the name of the library to be # used. The variable MPdir is only used for defining MPinc and MPlib. # #MPdir = /opt/mvapich-0.9.7-1/gnu = /export/home/hpl_stuff/mvapich2-0.9.8 MPdir MPinc = -I\$(MPdir)/include MPlib = -L\$(MPdir)/lib \$(MPdir)/lib/libmpich.a # # # - Linear Algebra library (BLAS or VSIPL) -------# # LAinc tells the C compiler where to find the Linear Algebra library # header files, LAlib is defined to be the name of the library to be # used. The variable LAdir is only used for defining LAinc and LAlib. LAdir = /export/home/hpl stuff/mvapich2-0.9.8/hpl LAinc = #LAlib = \$(LAdir)/libgoto_core2p-r1.03.a #LAlib = \$(LAdir)/libgoto_opt64-r0.94-2.so #LAlib = \$(LAdir)/libgoto core2p-r1.10.a LAlib = \$(LAdir)/libgoto_opteronp-r1.10.a ## # -# - F77 / C interface ------# # You can skip this section if and only if you are not planning to use # a BLAS library featuring a Fortran 77 interface. Otherwise, it is # necessary to fill out the F2CDEFS variable with the appropriate # options. **One and only one** option should be chosen in **each** of # the 3 following categories: # 1) name space (How C calls a Fortran 77 routine) # : all lower case and a suffixed underscore (Suns, # -DAdd Intel, ...), [default] # # -DNoChange : all lower case (IBM RS6000), # -DUpCase : all upper case (Cray), : the FORTRAN compiler in use is f2c. # -DAdd # 2) C and Fortran 77 integer mapping # #-DF77 INTEGER=int : Fortran 77 INTEGER is a C int, [default] #-DF77_INTEGER=long : Fortran 77 INTEGER is a C long, # -DF77_INTEGER=short : Fortran 77 INTEGER is a C short. # 3) Fortran 77 string handling # -DStringSunStyle : The string address is passed at the string loca-# tion on the stack, and the string length is then passed as an F77_INTEGER after all explicit # stack arguments. [default] -DStringStructPtr : The address of a structure is passed by a # # Fortran 77 string, and the structure is of the

```
form: struct {char *cp; F77_INTEGER len;},
#-DStringStructVal : A structure is passed by value for each Fortran
#
             77 string, and the structure is of the form:
             struct {char *cp; F77_INTEGER len;},
#
#
  -DStringCrayStyle : Special option for Cray machines, which uses
#
             Cray fcd (fortran character descriptor) for
#
             interoperation.
#
F2CDEFS = -DF77 INTEGER=int
#
# -
# - HPL includes / libraries / specifics ------
# ----
#
HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) $(LAinc) $(MPinc)
#HPL_LIBS = $(HPLlib) $(LAlib) $(MPlib) /export/home/hpl_stuff/mvapich2-0.9.8/hpl/src/xerbla.o
HPL_LIBS = $(HPLlib) $(LAlib) $(MPlib)
#
# - Compile time options ------
#
# -DHPL_COPY_L
                      force the copy of the panel L before bcast;
# -DHPL_CALL_CBLAS
# -DHPL_CALL_VSIPL
                       call the cblas interface;
                        call the vsip library;
#-DHPL DETAILED TIMING enable detailed timers;
# By default HPL will:
   *) not copy L before broadcast,
#
   *) call the BLAS Fortran 77 interface,
   *) not display detailed timing information.
#
#HPL_OPTS = -DHPL_CALL_CBLAS
# _____
HPL_DEFS = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES)
# ----
# - Compilers / linkers - Optimization flags ------
# ----
#
         = /usr/bin/gcc
#CC
CC
        = $(MPdir)/bin/mpicc
CCNOOPT = $(HPL_DEFS)
CCFLAGS = $(HPL_DEFS) -fomit-frame-pointer -O3 -funroll-loops -Bstatic
#CCFLAGS = $(HPL_DEFS) -g *** For debugging
# On some platforms, it is necessary to use the Fortran linker to find
# the Fortran internals used in the BLAS library.
#
#LINKER
          = /usr/bin/g77
LINKER = $(MPdir)/bin/mpicc
#LINKFLAGS = $(CCFLAGS) -Bstatic
LINKFLAGS = $(CCFLAGS) -Im -B static
#LINKFLAGS = $(CCNOOPT) -Im ***For debugging
ARCHIVER = ar
ARFLAGS = r
RANLIB = echo
#
#
    _____
```

HPL.dat file (same on both systems)

—	nchmark input file echnologies, Inc
HPL.out	-
6	device out (6=stdout,7=stderr,file)
1	# of problems sizes (N)
30000	Ns
1	# of NBs
256	NBs
0	PMAP process mapping (0=Row-,1=Column-major)
1	# of process grids (P x Q)
1	Ps
2	Qs
16.0	threshold
3	# of panel fact
0	PFACTs (0=left, 1=Crout, 2=Right)
2	<pre># of recursive stopping criterium</pre>
2 4	NBMINS (>= 1)
1	<pre># of panels in recursion</pre>
2	NDIVs
3	# of recursive panel fact.
0 1 2	RFACTs (0=left, 1=Crout, 2=Right)
1	# of broadcast
0	BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1	# of lookahead depth
0	DEPTHS (>=0)
2 64	SWAP (0=bin-exch,1=long,2=mix)
0	swapping threshold
0	L1 in (0=transposed,1=no-transposed) form U in (0=transposed,1=no-transposed) form
1	Equilibration (0=no,1=yes)
8	memory alignment in double (> 0)
~	

Principled Technologies®

Principled Technologies, Inc. 1007 Slater Road, Suite 250 Durham, NC 27703 www.principledtechnologies.com info@principledtechnologies.com

Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners

Disclaimer of Warranties; Limitation of Liability:

PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER, PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE. ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC.'S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.'S TESTING. CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.